Загадки Космоса – чёрная дыра Гаргантюа. Жуткая красота: сверхмассивные чёрные дыры Внешний Вид Гравитационных Пращей

Чёрной дырой называют область пространства-времени, гравитационное притяжение которой настолько велико, что покинуть её не может даже свет. Разросшиеся до гигантских размером чёрные дыры образуют ядра большинства галактик.

Сверхмассивная чёрная дыра - это чёрная дыра с массой около 105-1010 масс Солнца. По состоянию на 2014 год сверхмассивные чёрные дыры обнаружены в центре многих галактик, включая наш Млечный Путь.

Самая тяжёлая сверхмассивная чёрная дыра за пределами нашей галактики находится в галактике в гигантской эллиптической галактики NGC 4889 в созвездии Волосы Вероники. Её масса - около 21 млрд солнечных масс!

На этом снимке - галактика NGC 4889 находится в центре. Где-то там притаился тот самый гигант.

Общепринятой теории образования чёрных дыр такой массы ещё нет. Существует несколько гипотез, наиболее очевидной из которых является гипотеза, описывающая постепенное наращивание массы чёрной дыры путём гравитационного притяжения материи (обычно газа) из космического окружающего пространства. Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме.

Сверхмассивная чёрная дыра и её аккреционный диск в представлении художника.

Спиральная галактика NGC 4845 (тип Sa) в созвездии Дева, находящаяся на расстоянии 65 миллионов световых лет от Земли. В центре галактики находится сверхмассивная чёрная дыра с массой около 230 000 солнечных масс.

Космическая обсерватория Chandra (Chandra X-ray Observatory, NASA) не так давно предоставила доказательства о том, что многие сверхмассивные черные дыры вращаются с огромной скоростью. Измеренная скорость вращения одной из черных дыр - 3.5 трлн. миль/час - это примерно половина скорости света, а её невероятная гравитация тянет за собой окружающее пространство на много миллионов километров.

Спиральная галактика NGC 1097 в созвездии Печь. В центре галактики находится сверхмассивная черная дыра, которая в 100 миллионов раз тяжелее нашего Солнца. Она засасывает в себя любую материю в окру́ге.

Мощнейший квазар в галактике Маркарян 231 может получать энергию от двух расположенных в центре черных дыр, которые кружатся вокруг друг друга. Согласно подсчетам ученых, масса центральной черной дыры превышает солнечную массу в 150 миллионов раз, масса черной дыры-спутника больше солнечной в 4 миллиона раз. Этот динамический дуэт поглощает галактическую материю и вырабатывает огромное количество энергии, вызывающее сияние в центре галактики, способное затмить сияние миллиардов звезд.

Квазары - самые яркие источники во Вселенной, свет которых ярче чем сияние их галактик. Есть гипотеза, что квазары представляют собой ядра далеких галактик на стадии необычно высокой активности. Квазара в центре галактики Маркарян 231 - это самый близкий к нам подобный объект и проявляет себя как компактный радиоисточник. Ученые оценивают его возраст всего в миллион лет.

Гигантская эллиптическая галактика M60 и спиральная галактика NGC 4647 выглядят очень странной парой. Они обе находятся в созвездии Дева. Яркая M60, находящаяся на расстоянии около 54 миллионов световых лет от нас, имеет простую форму яйца, которая создаётся беспорядочно роящимися старыми звёздами. NGC 4647 (вверху справа), напротив, состоит из молодых голубых звёзд, газа и пыли, которые расположены в закрученных рукавах плоского вращающегося диска.

В центре М60 находится сверхмассивная черная дыра, имеющая 4,5 млрд солнечных масс.

Галактика 4C+29.30, расположенная на расстоянии 850 миллионов световых лет от Земли. В центре находится сверхмассивная чёрная дыра. Ёе масса в 100 миллионов раз больше массы нашего Солнца.

Астрономы долгое время искали подтверждение того, что Стрелец А - наша сверхмассивная черная дыра в центре Млечного пути, является источником струи плазмы. Наконец, они нашли его, - об этом говорят новые результаты, полученные рентгеновской обсерваторией Chandra (Чандра) и радиотелескопом VLA. Эта струя или джет образуется за счет поглощения вещества сверхмассивной черной дырой и ее существование давно предсказывалось теоретиками.

Используя самые качественные рентгеновские снимки, астрономы нашли первый очевидный факт того, что массивные черные дыры были схожи в Ранней Вселенной. Исследования и наблюдения отдаленных галактик показали, что они все обладают схожими супермассивными черными дырами. В Ранней Вселенной было найдено по меньшей мере 30 миллионов супермассивных схожих черных дыр. Это в 10 000 раз больше, чем предполагалось ранее.

На рисунке художника изображена растущая супермассивная черная дыра.

Спиральная галактика NGC 4945 с перемычкой (SBc) в созвездии Центавр. Она достаточно похожа на нашу Галактику, однако рентгеновские наблюдения показывают наличие ядра, вероятно, содержащего активную сверхмассивную чёрную дыру.

Скопление PKS 0745-19. Черная дыра, находящаяся в центре, является одной из 18 крупнейших известных черных дыр во Вселенной.

Мощный поток частиц из сверхмассивной черной дыры, ударивший по расположенной рядом галактике. Астрономы наблюдали столкновения галактик и раньше, но такой «космический выстрел» зафиксирован впервые. «Инцидент» произошел в звездной системе, расположенной на расстоянии 1,4 млрд. световых лет от Земли, где в настоящее время идет процесс слияния двух галактик. «Черная дыра» большей из двух галактик, которую астрономы сравнивают со «Звездой смерти» из киноэпопеи «Звездные войны», выбросила мощный поток заряженных частиц, который угодил прямо в галактику, находящуюся по соседству.

Найдена самая молодая чёрная дыра. Прародительницей новичка стала сверхновая, вспыхнувшая всего 31 год назад.

Художественное изображение черной дыры, поглощающей космическое пространство. Со времени теоретического предсказания чёрных дыр оставался открытым вопрос об их существовании, так как наличие решения типа «чёрная дыра» ещё не гарантирует, что существуют механизмы образования подобных объектов во Вселенной.

Вспышки на черной дыре в спиральной галактике M83 (известна также под названием Южная Вертушка), полученные с помощью космической рентгеновской обсерватории НАСА «Чандра». Южная Вертушка находится на расстоянии приблизительно 15 миллионов световых лет от нас.

Спиральная галактика NGC 4639 с перемычкой в созвездии Дева. NGC 4639 скрывает массивную черную дыру, которая поглощает космический газ и пыль.

Галактика M 77 в созвездии Кит. В центре неё - сверхмассивная черная дыра.

Художники изобразили черную дыру нашей Галактики – Стрелец A*. Это объект огромной массы. По анализу элементов орбит вначале было определено, что вес объекта составляет 2.6 млн солнечных масс, причем эта масса заключена в объёме не более 17 световых часов (120 а. e.) в диаметре.

Заглянуть в жерло чёрной дыры. Получить уникальное изображение жерла черной дыры и редких явлений в ее окрестностях удалось астрономам японского аэрокосмического агентства ДЖАКСА с помощью инфракрасной космической лаборатории NASA WISE. Объектом наблюдения WISE стала черная дыра в 6 раз превышающая массу солнца и значащаяся в каталогах под названием GX 339-4. Рядом с GX 339-4, находящейся на расстоянии более 20 тыс. световых лет от Земли, обращается звезда, вещество которой затягивается в черную дыру под воздействием ее чудовищного гравитационного поля, которое в 30 тыс. раз сильнее, чем на поверхности нашей планеты. При этом часть данного вещества выбрасывается от черной дыры в обратном направлении, образуя струи частиц, движущихся на околосветовых скоростях.

Галактика NGC 3081 в созвездии Гидра. Находится на расстоянии около 86 миллионов световых лет от Солнечной системы. Как считают ученые, в центре NGC 3081 находится сверхмассивная чёрная дыра.

Спит и видит сны. Почти десять лет назад космическая рентгеновская обсерватория НАСА «Чандра» зафиксировала признаки того, что, по-видимому, является черной дырой, которая поглощает газ прямо в центре ближайшей галактики Скульптор. И вот в 2013 году космический телескоп НАСА NuSTAR, который регистрирует жесткое рентгеновское излучение, бросает беглый взгляд в том же направлении и обнаруживает мирно спящую черную дыру (за последние 10 лет перешла в неактивное состояние).

Масса спящей черной дыры примерно в 5 миллионов раз больше массы нашего Солнца. Черная дыра находится в центре галактики Скульптор, известной также как NGC 253.

Плазма, выбрасываемая сверхмассивными черными дырами в центрах галактик может переносить огромное количество энергии на гигантские расстояния. Область 3C353 в свете рентгеновских лучей телескопов Чандра и Very Large Array окружена плазмой, выброшенной одной из черных дыр. На фоне гигантских «перьев» излучения галактики выглядят крошечными точками в центре.

Так по мнению художника может выглядеть сверхмассивная черная дыра с массой от нескольких миллионов до миллиардов раз больше массы нашего Солнца. Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме.

Вселенная таит в себе множество загадок. Строение и особенности различных , возможность межпланетных путешествий привлекают внимание не только ученых, но и любителей научной фантастики. Естественно, наибольшей привлекательностью обладает то, что имеет уникальные свойства, что, в силу разных обстоятельств, недостаточно исследовано. К подобным объектам относятся чёрные дыры.

Чёрные дыры обладают очень высокой плотностью и невероятно большой силой гравитации. Даже лучи света не могут вырваться из них. Именно поэтому учёные могут «увидеть» чёрную дыру только благодаря тому действию, которое она оказывает на окружающее пространство. В непосредственной близости от чёрной дыры вещество раскаляется и движется с очень большой скоростью. Это газообразное вещество называют аккреционным диском, который выглядит как плоское светящееся облако. Рентгеновское излучение аккреционного диска учёные наблюдают в рентгеновские телескопы. Также фиксируют огромную скорость движения звёзд по их орбитам, что происходит благодаря большой гравитации невидимого объекта огромной массы. Астрономы выделяют три класса чёрных дыр:

Чёрные дыры, имеющие звёздную массу,

Чёрные дыры с промежуточной массой,

Сверхмассивные чёрные дыры.

Звёздной считают массу от трех до ста солнечных масс. Сверхмассивными называют чёрные дыры, имеющие от сотен тысяч до нескольких миллиардов масс Солнца. Они находятся обычно в центре галактик.

Вторая космическая скорость или скорость убегания – это тот минимум, который необходимо достичь для преодоления гравитационного притяжения и выхода за пределы орбиты данного небесного тела. Для Земли скорость убегания равна одиннадцати километрам в секунду, а для чёрной дыры - это более трёхсот тысяч, вот насколько сильна её гравитация!

Границу чёрной дыры называют горизонтом событий. Объект, попавший внутрь него, уже не может покинуть эту область. Размер горизонта событий пропорционален массе чёрной дыры. Чтобы показать, насколько огромна плотность чёрных дыр, учёные приводят следующие цифры – чёрная дыра с массой, в 10 раз превосходящей солнечную, имела бы, примерно, 60 км в диаметре, а чёрная дыра с массой нашей Земли – всего лишь 2 см. Но это только теоретические расчеты, поскольку чёрных дыр, не достигших трёх солнечных масс, учёными ещё не выявлено. Всё, что входит в область горизонта событий, двигается по направлению к сингулярности. Сингулярность, если сказать упрощенно, - это место, где плотность стремится к бесконечности. Через гравитационную сингулярность нельзя провести входящую в неё геодезическую линию. Для чёрной дыры характерно искривление структуры пространства и времени. Прямая линия, которая в физике представляет собой путь движения света в вакууме, вблизи чёрной дыры становится кривой. Какие физические законы работают рядом с точкой сингулярности и непосредственно в ней, пока неизвестно. Некоторые исследователи, например, говорят о наличии так называемых червоточин, или пространственно-временных туннелей, в чёрных дырах. Но не все учёные согласны признать существование подобных туннелей-червоточин.

Тема космических путешествий, пространственно-временных туннелей служит источником вдохновения для писателей-фантастов, сценаристов и режиссеров. В 2014 году состоялась премьера фильма «Интерстеллар». Над его созданием работала целая группа учёных. Их руководителем стал известный учёный, специалист в области теории гравитации, астрофизики – Кип Стивен Торн. Этот фильм считают одним из самых научных среди фантастических кинокартин и, соответственно, предъявляют к нему высокие требования. Велись многочисленные споры о том, насколько различные моменты фильма соответствуют научным фактам. Была даже издана книга «Наука Интерстеллара», в которой профессор Стивен Торн объясняет с научной точки зрения различные эпизоды из фильма. Он говорил о том, что многое в киноленте основано как на научных фактах, так и на научных предположениях. Однако есть и просто художественный вымысел. Например, чёрная дыра Гаргантюа представлена в виде светящегося диска, который огибает свет. Это не расходится с научными знаниями, т.к. видна не сама чёрная дыра, а только аккреционный диск, а свет не может двигаться по прямой из-за мощной гравитации и искривления пространства.

В чёрной дыре Гаргантюа есть кротовая нора, представляющая собой червоточину или туннель, проходящий сквозь пространство и время. Наличие подобных туннелей в чёрных дырах - всего лишь научное предположение, с которым не согласны многие учёные. К художественному вымыслу относится возможность совершить путешествие по такому туннелю и вернуться назад.

Чёрная дыра Гаргантюа – это фантазия создателей «Интерстеллара», которая во многом соответствует реальным космическим объектам. Поэтому для особо яростных критиков хочется напомнить – фильм, всё же, научно-фантастический, а не научно-популярный. Он показывает красоту и величие мира, который нас окружает, напоминает о том, как много ещё нерешенных задач у . А требовать от фантастического фильма точного отражения научно доказанных фактов - несколько неправомерно и наивно.

В фильме радиус кротовой норы - 1 километр, длина желоба - 10 метров, радиус линзирования на 50 метров больше норы.

Кротовая нора нестабильна и очень хочет закрыться и превратиться в две чёрные дыры.

Чем длиннее кротовая нора, тем больше в ней будет видно размазанных копий объектов за норой, потому что у света больше путей попадания в глаз (под разным углом можно зайти в нору и выйти в одну точку).

Чтобы держать кротовую нору открытой, нужно очень много экзотического вещества с отрицательной массой, чтобы оно выталкивало из норы всё на противоположной стороне. Такое вещество, теоретически, может существовать, но найти его в достаточном количестве, чтобы держать нору - нереально.

Но есть второй вариант удержания кротовых нор: нужно использовать гравитационные силы из пятого измерения. Если четырёхмерный объект пронзает наше трёхмерное пространство, он создаёт в нём очень странные силы, которые ни на что не похожи. Вот их и использовать для удержания кротовой норы.

Гаргантюа снаружи

Такой массы достаточно, чтобы приливные силы на планете Миллер не разорвали её пополам.

Эндюранс припаркован на расстоянии 10 АЕ , и движется по орбите на скорости c/3 (100 000 км/с), в противоположном вращению Гаргантюа направлении.

Изображение дыры:

  • Гаргантюа приплюснута слева, потому что она вращается слева направо (относительно камеры) и у света, двигающегося в направлении вращения, больше шансов не быть засосанным за горизонт событий.
  • У каждой звезды за чёрной дырой есть два изображения на картинке: обычное, которое далеко от дыры, дано светом, немного согнутым гравитацией. И второе, внутри сферы Эйнштейна , такой сферы, которая всё очень сильно преломляет, потому что близко к дыре. Там ещё несколько особенностей, связанных с вращением дыры, но я это с трудом объясню, потому что оптика не лучшая моя сторона.

Чтобы аккреционный диск не зажарил всех заживо всеми возможными лучами, его сделал температурой всего пару тысяч градусов, как Солнце, он излучает свет и совсем чуть-чуть гамма и рентгеновских лучей. Именно из-за слабости диска из Гаргантюа не вырываются плазменные пучки из южного и северного полюсов, как из квазара. Такое возможно, если дыра не «кушала» другие планеты в течение долгого времени.

То, что на картинках светится - это и есть аккреционный газовый диск .
А выглядит он как хрен пойми что, потому что, благодаря гравитационному линзированию , над и под чёрной дырой виден кусок диска за этой самой дырой.

Очень близко к горизонту событий Гаргантюа есть две критические орбиты, образованные равновесием силы гравитации и центробежной силы.
По одной из них движется планета Манна, по другой - Эндюранс в конце фильма.

Пятимерное пространство

Если пятое (а также шестое, седьмое и тд) измерения существуют, то они должны быть свёрнуты в трубочку или сжиматься очень быстро, иначе гравитация из наших трёх измерений будет распространяться по другим, не 1/r^2, законам.

Пространство в Интерстелларе состоит из трёх трёхмерных бран в четырёхмерном пространстве анти-де Ситтера . Над и под нашей браной находятся ограничивающие браны, они нужны для того, чтобы гиперпространство искривлялось между слоями и не нарушались человеческие законы распространения сил, в частности гравитации. Так, в общем, можно сделать пятой измерение развёрнутым, а не скрученным в трубочку.

Гиперпространство искривляется между этими бранами и расстояние, измеренное в верхней или нижней бране будет очень сильно короче, чем в нашей бране Расстояние между этими бранами должно быть 1,5 сантиметров - этого достаточно для того, чтобы расстояние по верхней бране между Землёй и Гаргантюа было равно 1АЕ, и в нашей бране соблюдались законы Ньютона о гравитации.

Чтобы приземлиться на планету Миллер, которая вращается со скоростью 0,55 c, надо сделать два гравитационных манёвра: сперва остановить вращение Рейнджера полностью, чтобы дыра притянула корабль, а перед планетой Миллер сбросить ещё c/4 скорости и приземлиться.

Как это сделать? Это не показывается в фильме , но Кип предполагает, что вокруг Гаргантюа должны вращаться ещё как минимум две маленькие чёрные дыры, размером с Землю. Только попав в гравитацию таких дыр, можно так сильно сбросить скорость и не убить команду корабля. При этом в фильме Купер говорит, что ему нужно сделать менёвр вокруг нейронной звезды, а не чёрной дыры (я, честно, не помню этой фразы).

Волны на планете Миллер вызваны «покачиванием» планеты туда-сюда, относительно оси, перпендикулярной Гаргантюа. Типа, цунами.

Планета Миллер должна располагаться между аккреционным диском и Гаргантюа. Но Нолан решил не палить концовку, и поставил планету сами знаете как. Греется планета от аккреционного диска.

Планета Манна движется по очень закорюченной орбите со скоростью c/20 .

Чтобы достичь планеты Манна, Купер должен был совершить два гравитационных манёвра: вокруг малой чёрной дыры, вращающейся вокруг Гаргантюа, после этого на скорости c/2 подлететь к планете Манна, и сделав пару витков вокруг неё, снизить скорость до c/20

Облака на планете Манна сделаны из диоксида углерода «сухого льда». На поверхности - обычный лёд. Когда планета Манна подлетает ближе к Гаргантюа и её диску, диоксид углерода испаряется - получаются облака.

Подлетая к чёрной дыре

Как Купер поднял падающий Эндюранс? Вытащил его достаточно высоко, чтобы притяжение Гаргантюа притянуло его и Купера на критическую орбиту. Не забывайте, что когда Эндюранс падает на планету Манна, планета находится очень близко к Гаргантюа.

Критическая орбита, по которой Купер проводит корабль вокруг Гаргантюа - это поле, в котором центробежная сила, которая выталкивает корабль с орбиты и сила гравитации, которая тянет корабль внутрь дыры, совпадают. На этой орбите можно вечно крутиться вокруг Гаргантюа, но с одним условием: нельзя сдвигаться с орбиты ни на шаг, так как корабль либо отбросит от Гаргантюа, либо он упадёт в чёрную дыру. Эта орбита нестабильна. Стоит сказать, что орбита планеты Миллер точно такая же, но стабильная, с неё сложно слезть.

Постараюсь ответить на несколько вопросов, возникающих по фильму у зрителей.

1) Почему черная дыра Гаргантюа в фильме выглядит именно так?

Фильм Интерстеллар - это первый художественный фильм в истории кино, где было применена визуализация черной дыры на основе физико-математической модели. Моделирование осуществлялось командой специалистов из 30 человек (отделом визуальных эффектов Павла Франклина) в сотрудничестве с Кипом Торном - физиком-теоретиком с мировым именем, известного своими работами в теории гравитации, астрофизики и квантовой теории измерений. На один кадр тратилось около 100 часов, а всего на модель ушло около 800 терабайт данных.
Торн создал не только математическую модель, но и написал специализированное программное обеспечение (CGI), позволившее построить компьютерную модель визуализации.

Вот что получилось у Торна:

Конечно, справедливым будет задать вопрос: является ли моделирование Торна первым в истории науки? И является ли изображение, полученное Торном, чем-то ранее не встречавшимся в научной литературе? Разумеется, нет.
Жан Пьер Люмине из Обсерватории Париж-Мюдон, отделения Релятивистской Астрофизики и Космологии, также приобревший всемирную известность своими трудами из области черных дыр и космологии, - один из первых ученых, кто получил путем компьютерного моделирования изображение черной дыры. В 1987-м году выходит его книга «Черные дыры: популярное введение» где он пишет:

«Первые компьютерные картинки черной дыры, окруженной аккреционным диском, были получены мной (Luminet, J.-P. (1979): Astron. Astrophys.). Более тонкие расчеты проведены Марком (Marck, J.-A. (1993): Class. Quantum Grav) как для метрики Шварцшильда, так и для случая вращающейся черной дыры. Правдоподобные изображения - то есть рассчитанные с учетом кривизны пространства, красного смещения и физических свойств диска могут быть получены для произвольной точки, даже находящейся внутри горизонта событий. Был даже создан фильм, показывающий, как меняются эти искажения при движении по времениподобной траектории вокруг черной дыры (Delesalle, Lachieze-Rey and Luminet, 1993). Рисунок - это один из его кадров для случая движения по навесной параболической траектории»

Объяснение, почему изображение получается именно таким:

"Из-за кривизны пространства-времени в окрестности черной дыры изображение системы существенно отличается от эллипсов, которые мы бы видели, если б заменили черную дыру обычным маломассивным небесным телом. Излучение верхней стороны диска образует прямое изображение, причем из-за сильной дисторсии мы видим весь диск (черная дыра не закрывает от нас находящиеся за ней части диска). Нижняя часть диска также видима из-за существенного искривления световых лучей".

Изображение Люмине на удивление напоминает результат Торна, полученное им более чем через 30 лет после работ француза!

Почему же в других многочисленных визуализациях: как в статьях, так и научно-популярных фильмах, черную дыру часто можно увидеть совсем не такой? Ответ прост: компьютерное «рисование» черной дыры на основе математической модели - весьма сложный и трудоемкий процесс, который часто не вписывается в скромные бюджеты, поэтому авторы чаще всего обходятся работой дизайнера, а не физика.

2) Почему аккреционный диск Гаргантюа не такой эффектный, какой можно увидеть на многочисленных картинках и научно-популярных фильмах? Почему нельзя было показать черную дыру более яркой и внушительной?

Этот вопрос я объединю со следующим:

3) Известно, что аккреционный диск черной дыры является источником очень интенсивной радиации. Космонавты бы просто погибли, если бы приблизись к черной дыре.

И это действительно так. Черные дыры - это двигатели самых ярких, самых высокоэнергетичных источников излучения во Вселенной. По современным представлениям, сердцем квазаров, которые светят порой ярче, чем сотни галактик, всех вместе взятых, является черная дыра. Своей гравитацией она притягивает огромные массы вещества, заставляя его сжиматься в небольшой области под невообразимо высоким давлением. Это вещество нагревается, в нем текут ядерные реакции с испусканием мощнейшего рентгеновского и гамма излучения.
Вот как часто рисуют классический аккреционный диск черной дыры:

Если бы Гаргантюа была такой, то такой аккреционный диск убил бы своим излучением астронавтов. Аккреция у черной дыры Торна не такая плотная и массивная, по его модели температура диска не выше, чем у поверхности Солнца. Во многом это благодаря тому, что Гаргантюа - сверхмассивная черная дыра, массой не менее 100 миллионов масс солнца, с радиусом в одну астрономическую единицу.
Это не просто сверхмассивная, а ультрамассивная черная дыра. Даже черная дыра в центре Млечного Пути обладает, по разным оценкам, массой 4-4.5 млн. солнечных масс.
Хотя Гаргантюа - далеко не рекордсмен. Например, дыра в галактике NGC 1277 обладает массой 17 миллиардов солнц.
Идея представить себе такой эксперимент, в котором люди исследуют черную дыру, беспокоила Торна с 80-х годов. Уже в своей книге «Черные дыры и складки времени. Дерзкое наследие Эйнштейна», изданной в 1990-м году, Торн рассматривает гипотетическую модель межзвездного путешествия, в котором исследователи изучают черные дыры, желая как можно ближе подобраться к горизонту событий, чтобы лучше понять его свойства.
Исследователи начинают с небольшой черной дыры. Она их совершенно не устраивает потому, что создаваемые ею приливные силы слишком велики и опасны для жизни. Они сменяют объект изучения на более массивную черную дыру. Но и она их не удовлетворяет. Наконец, они направляются к гигантской Гаргантюа.
Гаргантюа находится вблизи квазара 3C273 - что позволяет сравнить свойства двух дыр.
Наблюдая за ними, исследователей задаются вопросом:

"Разница между Гаргантюа и 3C273 кажется удивительной: почему Гарнатюа, в его тысячу раз большими массой и размером, не обладает таким круглым бубликом газа и гигантскими струями квазара?"

Аккреционный диск Гаргантюа относительно холодный, не массивный, он не излучает столько энергии, как это происходит в квазаре. Почему?

"После телескопических исследований Брет находит ответ: раз в несколько месяцев звезда на орбите центральной дыры 3C273 подходит близко к горизонту и разрывается приливными силами черной дыры. Остатки звезды, массой примерной 1 солнечную, разбрызгиваются в окрестностях черной дыры. Постепенно внутренне трение загоняет разбрызгивающийся газ внутрь бублика. Этот свежий газ компенсирует газ, которым бублик постоянно снабжает дыру и струи. Таким образом бублик и струи поддерживают свои запасы газа и продолжают ярко светить.
Брет объясняет, что звезды могут близко подойти и к Гаргантюа. Но поскольку Гаргантюа намного больше 3C273, его приливные силы над горизонтом событий слишком слабы, чтобы разорвать звезду. Гаргантюа проглатывает звезды целиком, не разбрызгивая их внутренности в окружающий бублик. А без бублика Гаргантюа не может создать струи и другие особенности квазара.»

Чтобы вокруг черной дыры существовал массивный излучающий диск, должен быть строительный материал, из чего он может образоваться. В квазаре - это плотные газовые облака, очень близкие к черной дыре звезды. Вот классическая модель образования аккреционного диска:

В Интерстеллар видно, что массивному аккреционному диску там просто не из чего возникнуть. Нет ни плотных облаков, ни близких звезд в системе. Если что-то и было, то все это давно съедено.
Единственное, чем довольствуется Гаргантюа - это низкоплотные облака межвездного газа, создающие слабый, «низкотемпературный» аккреционный диск, не излучающий так интенсивно, как классические диски в квазарах или двойных системах. Поэтому излучение диска Гаргантюа не убьет астронавтов.

Торн пишет в The Science of Interstellar:

"Типичный аккреционный диск имеет очень интенсивное ренгтеновское, гамма и радиоизлучение. Настолько сильное, что поджарит любого астронавта, который вздумает оказаться рядом. Диск Гаргантюа, показанный в фильме - чрезвычайно слабый диск. "Слабый" - , разумеется, не по человеческим меркам, а по стандартам типичных квазаров. Вместо того, чтобы быть нагретым до сотен миллионов градусов, как нагреваются квазарные аккреционные диски, диск Гаргантюа нагрет всего лишь на несколько тысяч градусов, примерно как поверхность Солнца. Он излучает много света, но почти не излучает рентгеновские и гамма-лучи. Такие диски могут существовать на поздних стадиях эволюции черных дыр. Поэтому диск Гаргантюа довольно отличается от картины, которую вы можете часто видеть на различных популярных ресурсах по астрофизике."

Кип Торн единственный, кто высказал существования холодных аккреционных дисков вокруг черных дыр? Разумеется, нет.

В научной литературе холодные аккреционные диски черных дыр давно исследуются:
Согласно некоторым данным, сверхмассивная черная дыра в центре Млечного Пути Стрелец А* (Sgr A*) обладает как раз таки холодным аккреционным диском:

Вокруг нашей центральной черной дыры может существовать неактивный холодный аккреционный диск , оставшийся (из-за низкой вязкости) от "бурной молодости" Sgr A*, когда темп аккреции был высок. Теперь этот диск "засасывает" горячий газ, не давая ему падать в черную дыру: газ оседает в диске на относительно больших расстояниях от черной дыры.

(с) Close stars and an inactive accretion disc in Sgr A∗: eclipses and flares
Sergei Nayakshin1 and Rashid Sunyaev. // 1. Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. Garching, Germany 2. Space Research Institute, Moscow, Russi

Или Лебедь X-1:

Выполнен спектральный и временной анализ большого числа наблюдений обсерваторией RXTE аккрецирующих черных дыр Лебедь X-1, GX339-4 и GS1354-644 в низком спектральном состоянии в течение 1996-1998 гг. Для всех трех источников обнаружена корреляция между характерными частотами хаотической переменности и спектральными параметрами - наклоном спектра комптонизированного излучения и относительной амплитудой отраженной компоненты. Связь между амплитудой отраженной компоненты и наклоном Комптонизационного спектра показывает, что отражающая среда (холодный аккреционный диск ) является основным поставщиком мягких фотонов в область комптонизации.

(с) Report at SPIE organization Conference "Astronomical Telescopes and Instrumentation", 21-31 March 2000, Munich, Germany

Interaction Between Stars and an Inactive Accretion Disc in a Galactic Core // Vladimır Karas . Astronomical Institute, Academy of Sciences, Prague, Czech Republic and

(с) Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic // Ladislav Subr . Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

"Спокойные" черные дыры похожи на дыру в Туманности Андромеды - одну из первых обнаруженных сверхмассивных черных дыр. Ее масса - около 140 миллионов солнечных масс. Но нашли ее не по сильному излучению, а по характерному движению звезд вокруг этой области. Интенсивным “квазарным” излучением ядра таких галакктих не обладают. И астрофизики пришли к выводу, что на эту черную дыру просто не падает вещество. Такая ситуация характерная для “спокойных” галактик, наподобие Туманности Андромеды и Млечного Пути.

Галактики с активными черными дырами носят название активных, или сейфертовских галактик. К числу сейфертовских галактик относят примерно 1% от всех наблюдаемых спиральных галактик.

Про то, как нашли сверхмассивную черную дыру в Туманности Андромеды, хорошо показано в научно-популярном фильме BBC "Сверхмассивные черные дыры".

4) Черные дыры, как известно, обладают смертоносными приливными силами. Разве они не разорвут как астронавтов, так и планету Миллера, которая в фильме находится слишком близко к горизонту событий?

Даже лаконичная Википедия пишет про одно важное свойство сверхмассивной черной дыры:

«Приливные силы около горизонта событий значительно слабее из-за того, что центральная сингулярность расположена так далеко от горизонта, что гипотетический космонавт, путешествующий к центру чёрной дыры, не почувствует воздействия экстремальных приливных сил до тех пор, пока не погрузится в неё очень глубоко.»

С этим согласны любые научные и популярные источники, где описываются свойства сверхмассивных черных дыр.

Расположение точки, в которой приливные силы достигают такой величины, что разрушают попавший туда объект, зависит от размера чёрной дыры. Для сверхмассивных чёрных дыр, как, например, расположенных в центре Галактики, эта точка лежит в пределах их горизонта событий, поэтому гипотетический космонавт может пересечь их горизонт событий, не замечая никаких деформаций, но после пересечения горизонта событий его падение к центру чёрной дыры уже неизбежно. Для малых чёрных дыр, у которых радиус Шварцшильда гораздо ближе к сингулярности, приливные силы убьют космонавта ещё до достижения им горизонта событий

(с) Schwarzschild black holes // General relativity: an introduction for physicists. — Cambridge University Press, 2006. — P. 265. — ISBN 0-521-82951-8.

Разумеется, масса Гаргантюа была выбрана так, чтобы не разорвать приливами астронавтов.
Стоит заметить, что у Торна Гаргантюа 1990-го года несколько массивнее, чем в Интерстеллар:

«Расчеты показали, что чем больше дыра, тем меньшая тяга требуется ракете для удержания ее на окружности в 1.0001 горизонта событий. Для болезненной, но терпимой тяги в 10 земных g масса дыры должна быть в 15 триллионов солнечных масс. Самая близкая из таких дыр называется Гаргантюа, находится она на расстоянии 100000 световых лет от нашей галактики и в 100 миллионах световых лет от кластера галактик Дева, вокруг которого вращается Млечный Путь. Фактически она находится вблизи квазара 3C273, в 2 миллиардах световых лет от Млечного Пути...
Выйдя на орбиту Гаргантюа и проведя обычные измерения, вы убеждаетесь, что действительно его масса равна 15 триллионам солнечных масс и что вращается он очень медленно. Из этих данных вы вычисляете, что длина окружности его горизонта составляет 29 световых лет. Наконец, рассчитывает, что это дыра, окрестность которой вы можете исследовать, испытывая допустимые приливные силы и ускорение!"

В книге «The Science of Interstellar» 2014-го года, где Кип Торн описывает научные аспекты работы над фильмом, он приводит уже цифру 100 миллионов масс солнца - но замечая, что это минимальная масса, которая может быть у «комфортной» в отношении приливных сил черной дыры.

5) Как может существовать планета Миллера так близко от черной дыры? Не разорвет ли ее приливными силами?

Астроном Фил Плейнт, известный под кличкой «Плохой Астроном» за свой безудержный скептицизм, просто не смог пройти мимо Интерстеллар. К тому же до этого он злобно разрушал своим сверлящим скепсисом многие нашумевшие фильмы, например «Гравитацию».

«Я действительно с нетерпением ждал Интерстеллар.. Но то, что я увидел, - было ужасно. Это полный провал. Мне все очень, очень не понравилось»
- пишет он в своей статье от 6-го ноября.
Фил говорит, что относительно научной части фильм является полнейшей туфтой. Что даже в гипотетических рамках не может соответствовать современным научным представлениям. Особенно он проехался по планете Миллера. По его словам, планета может устойчиво вращаться вокруг такой черной дыры, но ее орбита должна быть как минимум в три раза больше размера самой Гаргантюа. Часы будут идти медленнее, чем на Земле, но всего на 20 процентов. Устойчивость планеты, близкой к черной дыре, как показано в фильме - это невозможная выдумка. К тому же ее совершенно разорвут на части приливные силы черной дыры.

Но 9-го ноября Плейнт появляется с новой статьей. Он ее называет Follow-Up: Interstellar Mea Culpa . Неримеримый научный критик решил покаяться.

«Снова я напортачил. Но независимо от величины своих ошибок, я всегда стараюсь признавать их. В конце-концов, сама наука заставляет нас признавать свои ошибки и учиться на них!»

Фил Плейнт признал, что допустил ошибки в своих соображениях и пришел к неверным выводам:

«В своем обзоре я говорил о планете Миллера, вращавшейся близко к черной дыре. Час, проведенный на планете равен семи земным годам. Моя претензия состояла в том, что при таком замедлении времени стабильная орбита планеты была бы невозможной.
И это правда... для невращающейся черной дыры. Моя ошибка состояла в том. что я не использовал правильные уравнения для черных дыр, которая быстро вращалась! Это сильно меняет картину пространства-времени возле черной дыры. Сейчас я понимаю, устойчивая орбита у данной планеты вокруг черной дыры вполне может существовать, причем настолько близко к горизонту событий, что указанное в фильме замедление времени возможно. В общем, я был не прав.
Я утверждал также в своем первоначальном анализе, что гравитационные приливы разорвут эту планету на части. Я консультировался с парой астрофизиков, которые также сказали, что приливы Гаргантюа, вероятно, должны уничтожить планету, но математически это пока что не подтверждено. Они до сих пор работают над решением этой задачи - и как только она будет решена, я опубликую решение. Я сам не могу сказать, был ли я прав, или нет в своем анализе, - и даже если я был прав, мои соображения по-прежнему касались только невращающейся черной дыры, так что они не являются справедливыми для этого случая.
Чтобы решить такую задачу, нужно обсудить множество математических проблем. Но я не знаю точно, насколько именно далеко была планета Миллера от Гаргантюа, и поэтому очень трудно сказать, разрушили бы ее приливы, или нет. Книгу физика и исполнительного продюсера фильма Кипа Торна «The Science of Interstellar» я еще не читал - думаю, она прольет свет на эту проблему.
Тем не менее, я ошибался насчет стабильности орбиты - и я сейчас считаю должным отменить эту мою претензию к фильму.
Итак, подведу итог: физическая картина вблизи черной дыры, продемонстрированная в фильме, является на самом деле соответствующей науке. Я сделал ошибку, за которую я приношу свои извинения.

Ikjyot Singh Kohli, физик-теоретик из Йорского университета, на своей странице привел решения уравнений, доказывая, что существование планеты Миллера вполне возможно.
Он нашел решение, при котором планета будет существовать в продемонстрированных в фильме условиях. Но также обсудил и проблему приливных сил, которые должны якобы разорвать планету. Его решение показывает, что приливные силы слишком слабы, чтобы ее разорвать.
Он даже обосновал наличие гигантских волн на поверхности планеты.

Соображения Сингха Коли с примерами уравнений тут:

Так показывает нахождение планеты Миллера Торн в своей книге:

Есть точки, в которых орбита будет не устойчива. Но Торн нашел также и устойчивую орбиту:

Приливные силы не разрывают планету, но деформируют ее:

Если планета вращается вокруг источника приливных сил, то они будут постоянно менять свое направление, по-разному деформируя ее в разных точках орбиты. В одном положении планета будет сплющена с востока на запад и вытянута с севера на юг. В другой точке орбиты - сдавлена с севера на юг и растянута с востока на запад. Поскольку гравитация Гаргантюа весьма велика, то меняющиеся внутренние деформации и трение будет нагревать планету, делая ее очень горячей. Но, как мы видели в фильме, планета Миллера выглядит совсем иначе.
Поэтому справедливым будет полагать, что планета всегда повернута к Гаргантюа одной стороной. И это естественно для многих тел, которые вращаются вокруг боле сильного гравитирующего объекта. Например, наша Луна, многие спутники Юпитера и Сатурна всегда повернуты к планете только одной стороной.

Также Торн остановился на еще одном важном моменте:

«Если смотреть на планету Миллера с планеты Манна, то можно увидеть, как она вращается вокруг Гаргантюа с орбитальным периодом 1.7 часа, проходя за это время почти миллиард километров. Это примерно половина скорости света! Из-за замедления времени для экипажа Рейнджера этот период уменьшается, составляя десятую долю секунды. Это очень быстро! И разве это не намного быстрее, чем скорость света? Нет, ведь в системе отчета вихреобразно движущегося пространства вокруг Гаргантюа планета движется медленее, чем свет.
В моей научной модели фильме планета повернута к черной дыре всегда одной стороной, и вращается с бешеной скоростью. Не разорвут ли центробежные силы планету на части из-за этой скорости? Нет: ее снова спасает вращающийся вихрь пространства. Планета не будет ощущать разрушительных центробежных сил, так как само пространство вращается вместе с ней с той же самой скоростью»

6) Как возможны настолько гигантские волны на поверхности планеты Миллера?

На этот вопрос Торн отвечает так:

«Я сделал необходимые физические расчеты, и нашел две возможных научных интерпретации.
Оба этих решения требуют, чтобы положение оси вращения планеты было не стабильным. Планета должна раскачиваться в некотором диапазоне, как показано на рисунке. Это происходит под воздействие гравитации Гаргантюа.

Когда я вычислил период этого раскачивания, то я получил величину около часа. И это совпало с тем временем, который выбрал Крис - до этого еще не знавший о моей научной интерпретации!
Моя вторая модель - это цунами. Приливные силы Гаргантюа может деформировать кору планеты Миллера, с таким же периодом (1 час). Эти деформации могут создавать очень сильные землетрясения. Они могут вызывать такие цунами, которые будут значительно превосходить любые, увиденные когда-либо на Земле.»

7) Как возможны такие невероятные маневры Эндуренс и Рейнджера на орбите Гаргантюа?

1) Эндуренс движется по парковочной орбите с радиусом, равным 10 радиусом Гаргантюа, и экипаж направляющийся на п. Миллера, движется со скоростью С/3. Планета Миллера движется со скоростью 55% от С.
2) Рейнджер должен сбросить скорость от С/3 на меньшую, чтобы снизить орбиту и приблизиться к п. Миллера. Он замедляется до с/4, и достигает окрестностей планеты (разумеется, тут надо соблюсти строгий расчет, чтобы попасть. Но это не проблема для компьютера)

Механизм для столь существенного изменения скорости описан Торном:

“Звезды и малые черные дыры вращаются вокруг гигантских черных дыр, как Гаргантюа. Именно они могут создавать определяющие силы, которые отклонят Рейнджер от его круговой орбиты и направят его вниз - к Гаргантюа. Подобный гравитационный маневр часто используется НАСА в Солнечной системе, хотя тут используется гравитация планет, а не черной дыры. Подробности этого маневра не раскрываются в Интерстеллар, но сам маневр упоминается, когда они говорят о использовании нейтронной звезды, чтобы замедлить скорость.“

Нейтронная звезда показана Торном на рисунке:

Свидание с нейтронной звездой позволяет изменить скорость:

“Такое приближение может очень опасным, т.е. Рейнджер должен приблизиться к нейтронной звезде (или малой черной дыре) достаточно близко, чтобы ощущать сильную гравитацию. Если тормозящая звезда или черна дыра с меньшим радиусом, чем 10 000 км, то людей и Рейнджер разорвут приливные силы. Поэтому нейтронная звезда должна быть по меньшей мере размером 10 000 км.
Я обсуждал эту проблему с Ноланом во время производства сценария, предложив черную дыру или нейтронную звезду на выбор. Нолан выбрал нейтронную звезду. Почему? Потому что он не хотел запутать зрителей двумя черными дырами.”
“Черные дыры, называемые IMBH (Intermediate-Mass Black Holes) - в десять тысяч раз меньше, чем Гаргантюа, но в тысячу раз тяжелее, чем обычные черные дыры. Такой отклонитель Куперу необходим. Некоторые IMBH, как полагают, образуются в шаровых скоплениях, а некоторые находятся в ядрах галактик, где находятся и гигантские черные дыры. Ближайшим примером является Туманность Андромеды, - самая близкая к нам галактика. В ядре Андромеды скрывается дыра, подобная Гаргантюа - примерно 100 млн. солнечных масс. Когда IMBH проходит через какой-либо регион с плотной звездной населенностью, то эффект “динамического трения” замедляет скорость IMBH , и она падает все ниже и ниже, все ближе оказываясь к гигантской черной дыре. В результате IMBH оказывается в непосредственной близости от сверхмассивной черной дыры. Таким образом, природа могла вполне обеспечить Купера таким источником гравитационного отклонения."

Реальное применение "гравитационной рогатки" смотрите на примере межпланетных космических аппаратов, - например, ознакомьтесь с историей Вояджеров.

Линзирование быстровращающейся черной дыры – Гаргантюа

Пространственный вихрь, образующийся из-за огромной скорости вращения Гаргантюа, влияет на гравитационное линзирование. Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше.

Для Гаргантюа (рис. 8.5) при движении камеры проявляются два кольца Эйнштейна, обозначенных на рисунке фиолетовыми замкнутыми кривыми. Снаружи внешнего кольца звёзды «движутся» вправо (в частности, вдоль двух пар красных кривых), так же как и для невращающейся черной дыры на рис. 8.4. Однако у заднего края тени пространственный вихрь сжимает поток движения в узкие полосы, которые довольно резко изгибаются у экватора, и ускоряет его. Также вихрь образует в потоке «водовороты» (замкнутые красные кривые).

Рис. 8.5. Эффект перетекания звезд рядом с быстровращающейся черной дырой, подобной Гаргантюа, «вид через камеру». В этой модели студии Double Negative дыра вращается со скоростью в 99,9 процента от предельной, а камера движется по круговой экваториальной орбите, окружность которой в шесть раз превышает окружность горизонта. См. видеоролик на странице Interstellar.withgoogle.com

Вторичное изображение каждой звезды появляется в области между кольцами Эйнштейна, и циркулирует вдоль замкнутой кривой (пример – две желтые кривые), двигаясь при этом в направлении, противоположном красным потокам снаружи внешнего кольца.

Здесь есть две особенные звезды, для которых гравитационное линзирование не действует. Одна из них расположена прямо над северным полюсом Гаргантюа, другая – прямо под южным. Это аналоги Полярной звезды, которая расположена прямо над Северным полюсом Земли. Я нарисовал пятиконечные звездочки рядом с первичными (красная звездочка) и вторичными (желтая) изображениями полярных звезд Гаргантюа. С Земли кажется, будто все звезды циркулируют вокруг Полярной звезды – поскольку мы вращаемся вместе с Землей. Аналогично по мере движения камеры по орбите вокруг дыры все первичные изображения звезд рядом с Гаргантюа циркулируют вокруг первичных изображений полярных звезд, но пути их движения (например, две замкнутые красные кривые) сильно искажены пространственным вихрем и гравитационным линзированием. Тем же образом вторичные изображения звезд циркулируют вокруг вторичных изображений полярных звезд (например, вдоль двух желтых кривых).

Почему в случае невращающейся черной дыры (рис. 8.4) кажется, что вторичные изображения звезд возникают из-за тени черной дыры, огибают ее и возвращаются обратно к тени, а не циркулируют вдоль замкнутых кривых, как в случае Гаргантюа (рис. 8.5)? На самом деле они все же циркулируют вдоль замкнутых кривых, но внутренний край этих кривых находится так близко к краю тени, что его невозможно увидеть. Вращение Гаргантюа завихряет пространство, и этот вихрь сдвигает внутреннее кольцо Эйнштейна наружу, проявляя его и показывая полный путь движения вторичных изображений (желтые кривые на рис. 8.5).

В пределах внутреннего кольца Эйнштейна движения узора звезд еще более сложны. Звезды в этой области являются изображениями третьего и более высоких порядков для всех звезд во Вселенной – звезд, первичные изображения которых видны снаружи внешнего кольца Эйнштейна, а вторичные – между внутренним и внешним кольцами.

На рис. 8.6 выделено пять участков экваториальной плоскости Гаргантюа, сама Гаргантюа показана черным, орбита камеры – фиолетовым пунктиром, а луч света – красным. Этот луч формирует для камеры изображение звезды, на которую указывает синяя стрелка. Камера движется вокруг Гаргантюа против часовой стрелки.

Рис. 8.6. Лучи света, формирующие изображения звезд, на которые указывают синие стрелки (Модель Double Negative, та же, что на рис. 8.1 и 8.5.)

Последовательно изучая эти рисунки, можно многое понять о гравитационном линзировании. Имейте в виду: действительное направление к звезде – вверх и вправо (внешние концы красных лучей). Стрелка, идущая от значка камеры, указывает на изображение звезды. Десятеричное изображение находится очень близко к левому краю тени, а правое вторичное изображение – рядом с правым краем; сравнивая направления камеры для этих изображений, можно увидеть, что тень покрывает примерно 150 градусов направления вверх, несмотря на то что действительное направление от камеры к центру Гаргантюа – влево и вверх. Эффект гравитационного линзирования сдвинул тень относительно действительного направления к Гаргантюа.

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

Муравей на батуте: искривленное пространство черной дыры Представьте, что вы муравей, который живет на детском батуте – резиновом полотнище, натянутом между высокими шестами. Под тяжестью лежащего на нем камня батут прогибается вниз (рис. 5.1). Вы – слепой муравей

Из книги автора

Искривления пространства и времени у черной дыры в точных цифрах Все три аспекта искривления пространства – времени (искривление пространства, замедление и искажение времени, пространственный вихрь) описываются математическими формулами. Эти формулы были выведены

Из книги автора

II. Гаргантюа

Из книги автора

6. Анатомия Гаргантюа Если мы знаем массу черной дыры и скорость ее вращения, то, воспользовавшись законами теории относительности, мы можем узнать и все остальные ее свойства: размер, силу гравитационного притяжения, насколько сильно ее горизонт событий вытянут

Из книги автора

Масса Гаргантюа Планета Миллер (о которой я подробно расскажу в главе 17) находится настолько близко к Гаргантюа, насколько это возможно без того, чтобы планете угрожала гибель. Мы знаем об этом, поскольку экипаж, находясь там, тратит очень много «земного времени» –

Из книги автора

Вращение Гаргантюа Когда Кристофер Нолан сказал мне, какое замедление времени на планете Миллер ему нужно – один час там на семь земных лет, – я был ошарашен. Я полагал это невозможным, о чем и сказал Крису. «Это не обсуждается», – отрезал он. Что ж, не в первый

Из книги автора

Анатомия Гаргантюа Узнав массу и скорость вращения Гаргантюа, я использовал уравнения Эйнштейна, чтобы рассчитать ее анатомию. Так же как и в главе 5, здесь мы рассмотрим только внешнюю анатомию, отложив внутреннее строение (особенно сингулярность) Гаргантюа до глав

Из книги автора

8. Внешний вид Гаргантюа Черные дыры не светятся, поэтому увидеть Гаргантюа можно лишь постольку, поскольку черная дыра влияет на излучения от других объектов. В «Интерстеллар» эти объекты – аккреционный диск (см. главу 9) и галактика, в которой находится Гаргантюа,

Из книги автора

Линзирование невращающейся черной дыры Чтобы разобраться с узором из гравитационно линзированных звезд вокруг тени, а также с мнимым движением звезд при перемещении камеры, рассмотрим сначала невращающуюся черную дыру и лучи света, исходящие от единственной звезды

Из книги автора

Гравитационные пращи у двойной черной дыры Третий способ – это моя собственная сумасбродная – крайне сумасбродная! – вариация одной из идей Дайсона .Представьте, что вы решили за несколько лет облететь изрядную часть Вселенной, совершив не просто

Из книги автора

Нейтронная звезда на орбите вокруг черной дыры Волны исходили от нейтронной звезды, вращающейся вокруг черной дыры. Звезда весила в 1,5 раза больше Солнца, а черная дыра – в 4,5 раза больше Солнца, при этом дыра быстро вращалась. Образованный этим вращением

Из книги автора

V. Исследуем окрестности Гаргантюа

Из книги автора

Вид Гаргантюа с планеты Миллер Когда в фильме «Рейнджер» приближается к планете Миллер, мы видим в небе Гаргантюа, которая занимает 10 градусов обзора (в 20 раз больше, чем Луна, если смотреть на нее с Земли!) и окружена ярким аккреционным диском (рис. 17.9). Как бы

Из книги автора

18. Вибрации Гаргантюа Пока Купер и Амелия Брэнд находятся на планете Миллер, Ромилли остается на «Эндюранс» и изучает черную дыру Гаргантюа. Он надеется, что точные данные позволят ему больше узнать о гравитационных аномалиях. Но более всего (как мне кажется) он

Из книги автора

Резонансные колебания Гаргантюа На рис. 18.1 – первая страница данных, собранных Ромилли. Каждая строчка чисел на этой странице относится к одной из резонансных частот колебаний Гаргантюа. Рис. 18.1. Первая страница данных, подготовленных Янгом и Циммерманом, чтобы

Из книги автора

28. Внутрь Гаргантюа Немного о смене убеждений В 1985 году, когда Карл Саган решил отправить свою героиню Элинор Эрроуэй (актриса Джоди Фостер) к звезде Вега через черную дыру, я сказал ему: нет! Она погибнет внутри черной дыры, безжалостная сингулярность растерзает ее

error: