Происхождение химических элем. Возникновение химических элементов в звёздах Как образуются химические элементы во вселенной

Водород, Hydrogenium, Н (1)

Как горючий (воспламеняемый) воздух водород известен довольно давно. Его получали действием кислот на металлы, наблюдали горение и взрывы гремучего газа Парацельс, Бойль, Лемери и другие ученые XVI - XVIII вв. С распространением теории флогистона некоторые химики пытались получить водород в качестве "свободного флогистона". В диссертации Ломоносова "О металлическом блеске" описано получение водорода действием "кислотных спиртов" (например, "соляного спирта", т. е. соляной кислоты) на железо и другие металлы; русский ученый первым (1745) выдвинул гипотезу о том, что водород ("горючий пар" - vapor inflammabilis) представляет собой флогистон. Кавендиш, подробно исследовавший свойства водорода, выдвинул подобную же гипотезу в 1766 г. Он называл водород "воспламеняемым воздухом", полученным из "металлов" (inflammable air from metals), и полагал, как и все флогистики, что при растворении в кислотах металл теряет свой флогистон. Лавуазье, занимавшийся в 1779 г. исследованием состава воды путем ее синтеза и разложения, назвал водород Hydrogine (гидроген), или Hydrogene (гидрожен), от греч. гидро - вода и гайноме - произвожу, рождаю.

Номенклатурная комиссия 1787 г. приняла словопроизводство Hydrogene от геннао - рождаю. В "Таблице простых тел" Лавуазье водород (Hydrogene) упомянут в числе пяти (свет, теплота, кислород, азот, водород) "простых тел, относящихся ко всем трем царствам природы и которые следует рассматривать как элементы тел"; в качестве старых синонимов названия Hydrogene Лавуазье называет горючий газ (gaz inflammable), основание горючего газа. В русской химической литературе конца XVIII и начала XIX в. встречаются два рода названий водорода: флогистические (горючий газ, горючий воздух, воспламенительный воздух, загораемый воздух) и антифлогистические (водотвор, водотворное существо, водотворный газ, водородный газ, водород). Обе группы слов представляют собой переводы французских названий водорода.

Изотопы водорода были открыты в 30-x годах текущего столетия и быстро приобрели большое значение в науке и технике. В конце 1931 г. Юри, Брекуэдд и Мэрфи исследовали остаток после длительного выпаривания жидкого водорода и обнаружили в нем тяжелый водород с атомным весом 2. Этот изотоп назвали дейтерием (Deuterium, D) от греч. - другой, второй. Спустя четыре года в воде, подвергнутой длительному электролизу, был обнаружен еще более тяжелый изотоп водорода 3Н, который назвали тритием (Tritium, Т), от греч. - третий.
Гелий, Helium, Не (2)

В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч. гелиос - солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах "земных" продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия. Американский химик Гиллебранд, исследуя урановые минералы, установил, что они при действии крепкой серной кислоты выделяют газы. Сам Гиллебранд считал, что это азот. Рамзай, обративший внимание на сообщение Гиллебранда, подверг спектроскопическому анализу газы, выделяемые при обработке кислотой минерала клевеита. Он обнаружил, что в газах содержатся азот, аргон, а также неизвестный газ, дающий яркую желтую линию. Не имея в своем распоряжении достаточно хорошего спектроскопа, Рамзай послал пробы нового газа Круксу и Локьеру, которые вскоре идентифицировали газ как гелий. В том же 1895 г. Рамзай выделил гелий из смеси газов; он оказался химически инертным, подобно аргону. Вскоре после этого Локьер, Рунге и Пашен выступили с заявлением, что гелий состоит из смеси двух газов - ортогелий и парагелий; один из них дает желтую линию спектра, другой - зеленую. Этот второй газ они предложили назвать астерием (Asterium) от греч.- звездный. Совместно с Траверсом Рамзай проверил это утверждение и доказал, что оно ошибочно, так как цвет линии гелия зависит от давления газа.
Литий, Lithium, Li (3)

Когда Дэви производил свои знаменитые опыты по электролизу щелочных земель, о существовании лития никто и не подозревал. Литиевая щелочная земля была открыта лишь в 1817 г. талантливым химиком-аналитиком, одним из учеников Берцелиуса Арфведсоном. В 1800 г. бразильский минералог де Андрада Сильва, совершая научное путешествие по Европе, нашел в Швеции два новых минерала, названных им петалитом и сподуменом, причем первый из них через несколько лет был вновь открыт на острове Уте. Арфведсон заинтересовался петалитом, произвел полный его анализ и обнаружил необъяснимую вначале потерю около 4% вещества. Повторяя анализы более тщательно, он установил, что в петалите содержится "огнепостоянная щелочь до сих пор неизвестной природы". Берцелиус предложил назвать ее литионом (Lithion), поскольку эта щелочь, в отличие от кали и натра, впервые была найдена в "царстве минералов" (камней); название это произведено от греч.- камень. Позднее Арфведсон обнаружил литиевую землю, или литину, и в некоторых других минералах, однако его попытки выделить свободный металл не увенчались успехом. Очень небольшое количество металлического лития было получено Дэви и Бранде путем электролиза щелочи. В 1855 г. Бунзен и Маттессен разработали промышленный способ получения металлического лития электролизом хлорида лития. В русской химической литературе начала XIX в. встречаются названия: литион, литин (Двигубский, 1826) и литий (Гесс); литиевую землю (щелочь) называли иногда литина.
Бериллий, Beryllium, Be (4)

Содержащие бериллий минералы (драгоценные камни) - берилл, смарагд, изумруд, аквамарин и др.- известны с глубокой древности. Некоторые из них добывались на Синайском полуострове еще в XVII в. до н. э. В Стокгольмском папирусе (III в.) описываются способы изготовления поддельных камней. Название берилл встречается у греческих и латинских (Beryll) античных писателей и в древнерусских произведениях, например в "Изборнике Святослава" 1073 г., где берилл фигурирует под названием вируллион. Исследование химического состава драгоценных минералов этой группы началось, однако, лишь в конце XVIII в. с наступлением химико-аналитического периода. Первые анализы (Клапрот, Биндгейм и др.) не обнаружили в берилле ничего особенного. В конце XVIII в. известный минералог аббат Гаюи обратил внимание на полное сходство кристаллического строения берилла из Лиможа и смарагда из Перу. Вокелен произвел химический анализ обоих минералов (1797) и обнаружил в обоих новую землю, отличную от алюмины. Получив соли новой земли, он установил, что некоторые из них обладают сладким вкусом, почему и назвал новую землю глюцина (Glucina) от греч. - сладкий. Новый элемент, содержащийся в этой земле, был назван соответственно глюцинием (Glucinium). Это название употреблялось во Франции в XIX в., существовал даже символ - Gl. Клапрот, будучи противником наименования новых элементов по случайным свойствам их соединений, предложил именовать глюциний бериллием (Beryllium), указав, что сладким вкусом обладают соединения и других элементов. Металлический бериллий был впервые получен Велером и Бусси в 1728 г. путем восстановления хлорида бериллия металлическим калием. Отметим здесь выдающиеся исследования русского химика И. В. Авдеева по атомному весу и составу окисла бериллия (1842). Авдеев установил атомный вес бериллия 9,26 (совр. 9,0122), тогда как Берцелиус принимал его равным 13,5, и правильную формулу окисла.

О происхождении названия минерала берилл, от которого образовано слово бериллий, существует несколько версий. А. М. Васильев (по Диргарту) приводит следующее мнение филологов: латинское и греческое названия берилла могут быть сопоставлены с пракритским veluriya и санскритским vaidurya. Последнее является названием некоторого камня и происходит от слова vidura (очень далеко), что, по-видимому, означает какую-то страну или гору. Мюллер предложил другое объяснение: vaidurya произошло от первоначального vaidarya или vaidalya, а последнее от vidala (кошка). Иначе говоря, vaidurya означает приблизительно "кошачий глаз". Рай указывает, что в санскрите топаз, сапфир и коралл считались кошачьим глазом. Третье объяснение дает Липпман, который считает, что слово берилл обозначало какую-то северную страну (откуда поступали драгоценные камни) или народ. В другом месте Липпман отмечает, что Николай Кузанский писал, что немецкое Brille (очки) происходит от варварско-латинского berillus. Наконец, Лемери, объясняя слово берилл (Beryllus), указывает, что Berillus, или Verillus, означает "мужской камень".

В русской химической литературе начала XIX в. глюцина называлась - сладимая земля, сладозем (Севергин, 1815), сладкозем (Захаров, 1810), глуцина, глицина, основание глицинной земли, а элемент именовался глицинием, глицинитом, глицием, сладимцем и пр. Гизе предложил название бериллий (1814). Гесс, однако, придерживался названия глиций; его употреблял в качестве синонима и Менделеев (1-е изд. "Основ химии").
Бор, Borum, В (5)

Природные соединения бора (англ. Boron, франц. Воrе, нем. Bor), главным образом нечистая бура, известны с раннего средневековья. Под названиями тинкал, тинкар или аттинкар (Tinkal, Tinkar, Attinkar) бура ввозилась в Европу из Тибета; она употреблялась для пайки металлов, особенно золота и серебра. В Европе тинкал назывался чаще боракс (Воrax) от арабского слова bauraq и персидского - burah. Иногда боракс, или борако, обозначал различные вещества, например соду (нитрон). Руланд (1612) называет боракс хризоколлой - смолой, способной "склеивать" золото и серебро. Лемери (1698) тоже называет боракс "клеем золота" (Auricolla, Chrisocolla, Gluten auri). Иногда боракс обозначал нечто вроде "узды золота" (capistrum auri). В Александрийской, эллинистической и византийской химической литературе борахи и борахон, а также в арабской (bauraq) обозначали вообще щелочь, например bauraq arman (армянский борак), или соду, позже так стали называть буру.

В 1702 г. Гомберг, прокаливая буру с железным купоросом, получил "соль" (борную кислоту), которую стали называть "успокоительной солью Гомберга" (Sal sedativum Hombergii); эта соль нашла широкое применение в медицине. В 1747 г. Барон синтезировал буру из "успокоительной соли" и натрона (соды). Однако состав буры и "соли" оставался неизвестным до начала XIX в. В "Химической номенклатуре" 1787 г. фигурирует название horacique асid (борная кислота). Лавуазье в "Таблице простых тел" приводит radical boracique. В 1808 г. Гей-Люссаку и Тенару удалось выделить свободный бор из борного ангидрида, нагревая последний с металлическим калием в медной трубке; они предложили назвать элемент бора (Воrа) или бор (Воrе). Дэви, повторивший опыты Гей-Люссака и Тенара, тоже получил свободный бор и назвал его бораций (Boracium). В дальнейшем у англичан это название было сокращено до Boron. В русской литературе слово бура встречается в рецептурных сборниках XVII - XVIII вв. В начале XIX в. русские химики называли бор буротвором (Захаров, 1810), буроном (Страхов,1825), основанием буровой кислоты, бурацином (Севергин, 1815), борием (Двигубский, 1824). Переводчик книги Гизе называл бор бурием (1813). Кроме того, встречаются названия бурит, борон, буронит и др.
Углерод, Carboneum, С (6)

Углерод (англ. Carbon, франц. Carbone, нем. Kohlenstoff) в виде угля, копоти и сажи известен человечеству с незапамятных времен; около 100 тыс. лет назад, когда наши предки овладели огнем, они каждодневно имели дело с углем и сажей. Вероятно, очень рано люди познакомились и с аллотропическими видоизменениями углерода - алмазом и графитом, а также с ископаемым каменным углем. Не удивительно, что горение углеродсодержащих веществ было одним из первых химических процессов, заинтересовавших человека. Так как горящее вещество исчезало, пожираемое огнем, горение рассматривали как процесс разложения вещества, и поэтому уголь (или углерод) не считали элементом. Элементом был огонь - явление, сопровождающее горение; в учениях об элементах древности огонь обычно фигурирует в качестве одного из элементов. На рубеже XVII - XVIII вв. возникла теория флогистона, выдвинутая Бехером и Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества - невесомого флюида - флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь - это почти чистый флогистон. Именно этим объясняли, в частности, "флогистирующее" действие угля, - его способность восстанавливать металлы из "известей" и руд. Позднейшие флогистики - Реомюр, Бергман и др. - уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым "чистый уголь" был признан Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа "Метод химической номенклатуры" (1787) появилось название "углерода" (carbone) вместо французского "чистый уголь" (charbone pur). Под этим же названием углерод фигурирует в "Таблице простых тел" в "Элементарном учебнике химии" Лавуазье. В 1791 г. английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокаленным мелом, в результате чего образовывался фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Еще в 1751 г. французский король Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины, и пришел к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода - графит - в алхимическом периоде считался видоизмененным свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и, будучи флогистиком, счел его сернистым телом особого рода, особым минеральным углем, содержащим связанную "воздушную кислоту" (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путем осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Международное название Carboneum происходит от лат. carbo (уголь). Слово это очень древнего происхождения. Его сопоставляют с cremare - гореть; корень саr, cal, русское гар, гал, гол, санскритское ста означает кипятить, варить. Со словом "carbo" связаны названия углерода и на других европейских языках (carbon, charbone и др.). Немецкое Kohlenstoff происходит от Kohle - уголь (старогерманское kolo, шведское kylla - нагревать). Древнерусское угорати, или угарати (обжигать, опалять) имеет корень гар, или гор, с возможным переходом в гол; уголь по-древнерусски югъль, или угъль, того же происхождения. Слово алмаз (Diamante) происходит от древнегреческого - несокрушимый, непреклонный, твердый, а графит от греческого - пишу.

В начале XIX в. старое слово уголь в русской химической литературе иногда заменялось словом "углетвор" (Шерер, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод.

Азот, Nitrogenium, N (7)

Азот (англ. Nitrogen, франц. Azote, нем. Stickstoff) был открыт почти одновременно несколькими исследователями. Кавендиш получил азот из воздуха (1772), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (Air mephitic от латинского mephitis - удушливое или вредное испарение земли). Вскоре Пристли установил, что если в воздухе долгое время горит свеча или находится животное (мышь), то такой воздух становится непригодным для дыхания. Официально открытие азота обычно приписывается ученику Блэка - Рутерфорду, опубликовавшему в 1772 г. диссертацию (на степень доктора медицины) - "О фиксируемом воздухе, называемом иначе удушливым", где впервые описаны некоторые химические свойства азота. В эти же годы Шееле получил азот из атмосферного воздуха тем же путем, что и Кавендиш. Он назвал новый газ "испорченным воздухом" (Verdorbene Luft). Поскольку пропускание воздуха через раскаленный уголь рассматривалось химиками-флогистиками как его флогистирование, Пристли (1775) назвал азот флогистированным воздухом (Air phlogisticated). О флогистировании воздуха в своем опыте говорил ранее и Кавендиш. Лавуазье в 1776 - 1777 гг. подробно исследовал состав атмосферного воздуха и установил, что 4/5 его объема состоят из удушливого газа (Аir mofette - атмосферный мофетт, или просто Mofett). Названия азота - флогистированный воздух, мефитический воздух, атмосферный мофетт, испорченный воздух и некоторые другие - употреблялись до признания в европейских странах новой химической номенклатуры, т. е. до выхода в свет известной книги "Метод химической номенклатуры" (1787).

Составители этой книги - члены номенклатурной комиссии Парижской академии наук - Гитон де Морво, Лавуазье, Бертолле и Фуркруа - приняли лишь несколько новых названий простых веществ, в частности, предложенные Лавуазье названия "кислород" и "водород". При выборе нового названия для азота комиссия, исходившая из принципов кислородной теории, оказалась в затруднении. Как известно, Лавуазье предлагал давать простым веществам такие названия, которые отражали бы их основные химические свойства. Соответственно, этому азоту следовало бы дать название "радикал нитрик" или "радикал селитряной кислоты". Такие названия, пишет Лавуазье в своей книге "Начала элементарной химии" (1789), основаны на старых терминах нитр или селитра, принятых в искусствах, в химии и в обществе. Они были бы весьма подходящими, но известно, что азот является также основанием летучей щелочи (аммиака), как это было незадолго до этого установлено Бертолле. Поэтому название радикал, или основание селитряной кислоты, не отражает основных химических свойств азота. Не лучше ли остановиться на слове азот, которое, по мнению членов номенклатурной комиссии, отражает основное свойство элемента - его непригодность для дыхания и жизни. Авторы химической номенклатуры предложили производить слово азот от греческой отрицательной приставки "а" и слова жизнь. Таким образом, название азот, по их мнению, отражало его нежизненность, или безжизненность.

Однако слово азот придумано не Лавуазье и не его коллегами по комиссии. Оно известно с древности и употреблялось философами и алхимиками средневековья для обозначения "первичной материи (основы) металлов", так называемого меркурия философов, или двойного меркурия алхимиков. Слово азот вошло в литературу, вероятно, в первые столетия средневековья, как и многие другие зашифрованные и имевшие мистический смысл названия. Оно встречается в сочинениях многих алхимиков, начиная с Бэкона (ХIII в.) - у Парацельса, Либавия, Валентина и др. Либавий указывает даже, что слово азот (azoth) происходит от старинного испано-арабского слова азок (azoque или azoc), обозначавшего ртуть. Но более вероятно, что эти слова появились в результате искажений переписчиками коренного слова азот (azot или azoth). Теперь происхождение слова азот установлено более точно. Древние философы и алхимики считали "первичную материю металлов" альфой и омегой всего существующего. В свою очередь, это выражение заимствовано из Апокалипсиса - последней книги Библии: "я - альфа и омега, начало и конец, первый и последний". В древности и в средние века христианские философы считали приличным употреблять при написании своих трактатов только три языка, признававшихся "священными", - латинский, греческий и древнееврейский (надпись на кресте при распятии Христа по евангельскому рассказу была сделана на этих трех языках). Для образования слова азот были взяты начальные и конечные буквы алфавитов этих трех языков (а, альфа, алеф и зэт, омега, тов - АААZОТ).

Составители новой химической номенклатуры 1787 г., и прежде всего инициатор ее создания Гитон де Морво, хорошо знали о существовании с древних времен слова азот. Морво отметил в "Методической энциклопедии" (1786) алхимическое значение этого термина. После опубликования "Метода химической номенклатуры" противники кислородной теории - флогистики - выступили с резкой критикой новой номенклатуры. Особенно, как отмечает сам Лавуазье в своем учебнике химии, критиковалось принятие "древних наименований". В частности, Ламетри - издатель журнала "Observations sur la Physique" - оплота противников кислородной теории, указывал на то, что слово азот употреблялось алхимиками в другом смысле.

Несмотря на это, новое название было принято во Франции, а также и в России, заменив собою ранее принятые названия "флогистированный газ", "мофетт", "основание мофетта" и т. д.

Словообразование азот от греческого тоже вызвало справедливые замечания. Д. Н. Прянишников в своей книге "Азот в жизни растений и в земледелии СССР" (1945) совершенно правильно заметил, что словообразование от греческого "вызывает сомнения". Очевидно, эти сомнения имелись и у современников Лавуазье. Сам Лавуазье в своем учебнике химии (1789) употребляет слово азот наряду с названием "радикал нитрик" (radical nitrique).

Интересно отметить, что более поздние авторы, пытаясь, видимо, как-то оправдать неточность, допущенную членами номенклатурной комиссии, производили слово азот от греческого - дающий жизнь, животворный, создав искусственное слово "азотикос", отсутствующее в греческом языке (Диргарт, Реми и др.). Однако этот путь образования слова азот едва ли может быть признан правильным, так как производное слово для названия азот должно было бы звучать "азотикон".

Неудачность названия азот была очевидной для многих современников Лавуазье, вполне сочувствовавших его кислородной теории. Так, Шапталь в своем учебнике химии "Элементы химии" (1790) предложил заменить слово азот словом нитроген (нитрожен) и называл газ, соответственно воззрениям своего времени (каждая молекула газа представлялась окруженной атмосферой теплорода), "газ нитрожен" (Gas nitrogene). Свое предложение Шапталь подробно мотивировал. Одним из доводов послужило указание, что название, означающее безжизненный, могло бы с большими основаниями быть дано другим простым телам (обладающим, например, сильными ядовитыми свойствами). Название нитроген, принятое в Англии и в Америке, стало в дальнейшем основой международного названия элемента (Nitrogenium) и символа азота - N. Во Франции в начале ХIХ в. вместо символа N употребляли символ Az. В 1800 г. один из соавторов химической номенклатуры - Фуркруа предложил еще одно название - алкалиген (алкалижен - alcaligene), исходя из того, что азот является "основанием" летучей щелочи (Alcali volatil) - аммиака. Но это название не было принято химиками. Упомянем, наконец, название азота, которое употребляли химики-флогистики и, в частности, Пристли, в конце ХVIII в. - септон (Septon от французского Septique - гнилостный). Это название предложено, по-видимому, Митчелом - учеником Блэка, впоследствии работавшим в Америке. Дэви отверг это название. В Германии с конца ХVIII в. и до настоящего времени азот называют Stickstoff, что означает "удушливое вещество".

Что касается старых русских названий азота, фигурировавших в разнообразных сочинениях конца XVIII - начала ХIХ в., то они таковы: удушливый гас, нечистый гас; мофетический воздух (все это переводы французского названия Gas mofette), удушливое вещество (перевод немецкого Stickstoff), флогистированный воздух, гас огорюченный, огорюченный воздух (флогистические названия - перевод термина, предложенного Пристли - Рlogisticated air). Употреблялись также названия; испорченный воздух (перевод термина Шееле Verdorbene Luft), селитротвор, селитротворный гас, нитроген (перевод названия, предложенного Шапталем - Nitrogene), алкалиген, щелочетвор (термины Фуркруа, переведенные на русский язык в 1799 и 1812 гг.), септон, гнилотвор (Septon) и др. Наряду с этими многочисленными названиями употреблялись и слова азот и азотический гас, особенно с начала ХIХ в.

В.Севергин в своем "Руководстве к удобнейшему разумению химических книг иностранных" (1815) объясняет слово азот следующим образом: "Azoticum, Azotum, Azotozum - азот, удушливое вещество"; "Azote - Азот, селитротвор"; "селитротворный газ, азотовый газ". Окончательно слово азот вошло в русскую химическую номенклатуру и вытеснило все другие названия после выхода в свет "Оснований чистой химии" Г. Гесса (1831).
Производные названия соединений, содержащих азот, образованы на русском и других языках либо от слова азот (азотная кислота, азосоединения и др.), либо от международного названия нитрогениум (нитраты, нитросоединения и др.). Последний термин происходит от древних названий нитр, нитрум, нитрон, обозначавших обычно селитру, иногда - природную соду. В словаре Руланда (1612) сказано: "Нитрум, борах (baurach), селитра (Sal petrosum), нитрум, у немцев - Salpeter, Веrgsalz - то же, что и Sal реtrae".



Кислород, Oxygenium, O (8)

Открытие кислорода (англ. Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. Лишь в XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение, но эта вполне рациональная гипотеза не получила тогда развития, так как представление о горении, как о процессе соединения горящего тела с некой составной частью воздуха, казалось в то время противоречащим столь очевидному факту, как то, что при горении имеет место разложение горящего тела на элементарные составные части. Именно на этой основе на рубеже XVII в. возникла теория флогистона, созданная Бехером и Шталем. С наступлением химико-аналитического периода развития химии (вторая половина XVIII в.) и возникновением "пневматической химии" - одной из главных ветвей химико-аналитического направления - горение, а также дыхание вновь привлекли к себе внимание исследователей. Открытие различных газов и установление их важной роли в химических процессах явилось одним из главных стимулов для систематических исследований процессов горения веществ, предпринятых Лавуазье. Кислород был открыт в начале 70-х годов XVIII в. Первое сообщение об этом открытии было сделано Пристли на заседании Английского королевского общества в 1775 г. Пристли, нагревая красную окись ртути большим зажигательным стеклом, получил газ, в котором свеча горела более ярко, чем в обычном воздухе, а тлеющая лучина вспыхивала. Пристли определил некоторые свойства нового газа и назвал его дефлогистированным воздухом (daphlogisticated air). Однако двумя годами ранее Пристли (1772) Шееле тоже получал кислород разложением окиси ртути и другими способами. Шееле назвал этот газ огненным воздухом (Feuerluft). Сообщение же о своем открытии Шееле смог сделать лишь в 1777 г. Между тем в 1775 г. Лавуазье выступил перед Парижской академией наук с сообщением, что ему удалось получить "наиболее чистую часть воздуха, который нас окружает", и описал свойства этой части воздуха. Вначале Лавуазье называл этот "воздух" эмпирейным, жизненным (Air empireal, Air vital), основанием жизненного воздуха (Base dе l"air vital). Почти одновременное открытие кислорода несколькими учеными в разных странах вызвало споры о приоритете. Особенно настойчиво признания себя первооткрывателем добивался Пристли. По существу споры эти не окончились до сих пор. Подробное изучение свойств кислорода и его роли в процессах горения и образования окислов привело Лавуазье к неправильному выводу о том, что этот газ представляет собой кислотообразующее начало. В 1779 г. Лавуазье в соответствии с этим выводом ввел для кислорода новое название - кислотообразующий принцип (principe acidifiant ou principe oxygine). Фигурирующее в этом сложном названии слово oxygine Лавуазье произвел от греч. - кислота и "я произвожу".
Фтор, Fluorum, F (9)

Фтор (англ. Fluorine, франц. и нем. Fluor) получен в свободном состоянии в 1886 г., но его соединения были известны давно и широко применялись в металлургии и производстве стекла. Первые упоминания о флюорите (CaF2) под названием плавиковый шпат (Fliisspat) относятся к XVI в. В одном из сочинений, приписываемых легендарному Василию Валентину, упоминаются окрашенные в различные цвета камни - флюссе (Fliisse от лат. fluere - течь, литься), которые применялись в качестве плавней при выплавке металлов. Об этом же пишут Агрикола и Либавиус. Последний вводит особые названия для этого плавня - плавиковый шпат (Flusspat) и минеральный плавик. Многие авторы химико-технических сочинений XVII и XVIII вв. описывают разные виды плавикого шпата. В России эти камни именовались плавик, спалт, спат; Ломоносов относил эти камни к разряду селенитов и называл шпатом или флусом (флус хрустальный). Русские мастера, а также собиратели коллекций минералов (например, в XVIII в. князь П. Ф. Голицын) знали, что некоторые виды шпатов при нагревании (например, в горячей воде) светятся в темноте. Впрочем, еще Лейбниц в своей истории фосфора (1710) упоминает в связи с этим о термофосфоре (Thermophosphorus).

По-видимому, химики и химики-ремесленники познакомились с плавиковой кислотой не позднее XVII в. В 1670 г. нюрнбергский ремесленник Шванхард использовал плавиковый шпат в смеси с серной кислотой для вытравливания узоров на стеклянных бокалах. Однако в то время природа плавикового шпата и плавиковой кислоты была совершенно неизвестна. Полагали, например, что протравливающее действие в процессе Шванхарда оказывает кремневая кислота. Это ошибочное мнение устранил Шееле, доказав, что при взаимодействии плавикового шпата с серной кислотой кремневая кислота получается в результате разъедания стеклянной реторты образующейся плавиковой кислотой. Кроме того, Шееле установил (1771), что плавиковый шпат представляет собой соединение известковой земли с особой кислотой, которая получила название "шведская кислота". Лавуазье признал радикал плавиковой кислоты (radical fluorique) простым телом и включил его в свою таблицу простых тел. В более или менее чистом виде плавиковая кислота была получена в 1809 г. Гей-Люссаком и Тенаром путем перегонки плавикового шпата с серной кислотой в свинцовой или серебряной реторте. При этой операции оба исследователя получили отравление. Истинную природу плавиковой кислоты установил в 1810 г. Ампер. Он отверг мнение Лавуазье о том, что в плавиковой кислоте должен содержаться кислород, и доказал аналогию этой кислоты с хлористоводородной кислотой. О своих выводах Ампер сообщил Дэви, который незадолго до этого установил элементарную природу хлора. Дэви полностью согласился с доводами Ампера и затратил немало усилий на получение свободного фтора электролизом плавиковой кислоты и другими путями. Принимая во внимание сильное разъедающее действие плавиковой кислоты на стекло, а также на растительные и животные ткани, Ампер предложил назвать элемент, содержащийся в ней, фтором (греч. - разрушение, гибель, мор, чума и т. д.). Однако Дэви не принял этого названия и предложил другое - флюорин (Fluorine) по аналогии с тогдашним названием хлора - хлорин (Chlorine), оба названия до сих пор употребляются в английском языке. В русском языке сохранилось название, данное Ампером.

Многочисленные попытки выделить свободный фтор в XIX в. не привели к успешным результатам. Лишь в 1886 г. Муассану удалось сделать это и получить свободный фтор в виде газа желто-зеленого цвета. Так как фтор является необычайно агрессивным газом, Муассану пришлось преодолеть множество затруднений, прежде чем он нашел материал, пригодный для аппаратуры в опытах со фтором. U-образная трубка для электролиза фтористоводородной кислоты при минус 55oС (охлаждаемая жидким хлористым метилом) была сделана из платины с пробками из плавикового шпата. После того, как были исследованы химические и физические свойства свободного фтора, он нашел широкое применение. Сейчас фтор - один из важнейших компонентов синтеза фторорганических веществ широкого ассортимента. В русской литературе начала XIX в. фтор именовался по-разному: основание плавиковой кислоты, флуорин (Двигубский, 1824), плавиковость (Иовский), флюор (Щеглов, 1830), флуор, плавик, плавикотвор. Гесс с 1831 г. ввел в употребление название фтор.
Неон, Neon, Nе (10)

Этот элемент открыт Рамзаем и Траверсом в 1898 г., через несколько дней после открытия криптона. Ученые отобрали первые пузырьки газа, образующегося при испарении жидкого аргона, и установили, что спектр этого газа указывает на присутствие нового элемента. Рамзай так рассказывает о выборе названия для этого элемента:

"Когда мы в первый раз рассматривали его спектр, при этом находился мой 12-летний сын.
- Отец,- сказал он, - как называется этот красивый газ?
- Это еще не решено, - ответил я.
- Он новый? - полюбопытствовал сын.
- Новооткрытый, - возразил я.
- Почему бы в таком случае не назвать его Novum, отец?
- Это не подходит, потому что novum не греческое слово, - ответил я. - Мы назовем его неоном, что по-гречески значит новый.
Вот таким то образом газ получил свое название".
Автор: Фигуровский Н.А.
Химия и Химики № 1 2012

Продолжение следует...

«Первые три минуты»

Появились протоны и нейтроны , вроде бы горячо и плотно. И с протона и нейтрона можно начать термоядерные реакции, как в недрах звёзд. Но на самом деле, ещё слишком горячо и плотно. Поэтому надо чуть-чуть подождать и где-то с первых секунд жизни Вселенной и до первых минут. Есть книжка Вайнберга известная, называется «Первые три минуты» и она посвящена вот этому этапу в жизни Вселенной .

Происхождение химического элемента - гелия

В первые минуты начинают идти термоядерные реакции, потому что вся Вселенная похожа на недра звезды и термоядерные реакции могут идти. Начинают образовываться изотопы водорода дейтерий и соответственно тритий . Начинают образовываться более тяжелые химические элементы гелий . А вот дальше двигаться трудно, потому что стабильных ядер с числом частиц 5 и 8 нет. И получается такая вот сложная затыка.

Представьте, что у вас комната усыпана детальками от лего и вам нужно бегать и собирать структуры. Но детальки разбегаются или комната расширяется, то есть, как-то всё движется. Вам трудно собирать детальки, да ещё вдобавок, например, вот две вы сложили, потом ещё две сложили. А вот приткнуть пятую не получается. И поэтому за эти первые минуты жизни Вселенной , в основном, успевает сформироваться только гелий , немножко лития , немножко дейтерия остаётся. Он просто сгорает в этих реакциях, превращается в тот же гелий .

Так, что в основном Вселенная оказывается, состоящей из водорода и гелия , спустя первые минуты своей жизни. Плюс совсем небольшое количество элементов немножко более тяжёлых. И как бы всё, на этом первоначальный этап формирования таблицы Менделеева закончился. И наступает пауза, пока не появятся первые звезды. В звёздах опять получается горячо и плотно. Создаются условия для продолжения термоядерного синтеза . И звёзды большую часть своей жизни, занимаются синтезом гелия из водорода . То есть всё равно игра с первыми двумя элементами. Поэтому из-за существования звёзд, водорода становится меньше, гелия становится больше. Но важно понимать, что по большей части, вещество во Вселенной находится не в звёздах. В основном обычное вещество разбросано по всей Вселенной в облаках горячего газа, в скоплениях галактик, в волокнах между скоплений. И этот газ может быть никогда не превратится в звёзды, то есть в этом смысле, Вселенная всё равно останется, в основном, состоящей из водорода и гелия . Если мы говорим об обычном веществе, но на фоне этого, на уровне процентов, количество лёгких химических элементов падает, а количество тяжёлых элементов растет.

Звёздный нуклеосинтез

И так после эпохи первоначального нуклеосинтеза , наступает эпоха звёздного нуклеосинтеза , который идёт и в наши дни. В звезде, в начале водород превращается в гелий . Если условия позволят, а условия это температура и плотность, то пойдут следующие реакции. Чем дальше мы продвигаемся по таблице Менделеева, тем труднее начинать эти реакции, тем более экстремальные условия нужны. Условия создаются в звезде сами по себе. Звезда сама на себя давит, ее гравитационная энергия уравновешивается с её внутренней энергией, связанной с давлением газа и изучением. Соответственно, чем тяжелее звезда, тем сильнее она себя сдавливает и получает более высокую температуру и плотность в центре. И там могут идти следующие атомные реакции .

Химическая эволюция звёзд и галактик

В Солнце после синтеза гелия , запустится следующая реакция, будет образовываться углерод и кислород . Дальше реакции не пойдут и Солнце превратится в кислородно-углеродный белый карлик . Но при этом внешние слои Солнца, уже обогащённые реакция синтеза, будут сброшены. Солнце превратится в планетарную туманность, внешние слои разлетятся. И по большей части, вот так сброшенное вещество, после того, как она перемешается с веществом межзвёздной среды, сможет войти в состав следующего поколения звёзд. Так что у звёзд есть такая вот эволюция. Есть химическая эволюция галактик , каждые следующие образующиеся звёзды, в среднем, содержат всё больше и больше тяжелых элементов. Поэтому самые первые звёзды, которые образовывались из чистого водорода и гелия , они, например, не могли иметь каменных планет. Потому что их не из чего было делать. Нужно было, чтобы прошел цикл эволюции первых звёзд и здесь важно, что быстрее всего эволюционируют массивные звёзды.

Происхождение тяжёлых химических элементов во Вселенной

Происхождение химического элемента - железа

Солнце и его полное время жизни почти 12 млрд лет. А массивные звезды живут несколько миллионов лет. Они доводят реакции до железа , и в конце своей жизни взрываются. При взрыве, кроме самого внутреннего ядра, всё вещество оказывается сброшено и поэтому наружу сбрасывается большое количество, естественно, и водорода , который остался не переработанным во внешних слоях. Но важно, что выбрасывается большое количество кислорода , кремния , магния , то есть уже достаточно тяжелых химических элементов , чуть-чуть не доходящих до железа и, родственных ему, никеля и кобальта . Очень выделенные элементы. Может быть, со школьных времен памятна такая картинка: номер химического элемента и выделение энергии при реакциях синтеза или распада и там получается такой максимум. И железо, никель, кобальт находятся на самой верхушке. Это означает, что распад тяжелых химических элементов выгоден до железа , синтез из лёгких тоже выгоден до железа. Дальше энергию нужно тратить. Соответственно мы двигаемся со стороны водорода, со стороны лёгких элементов и реакция термоядерного синтеза в звездах могут доходить до железа. Они должны идти с выделением энергии.

При взрыве массивной звезды, железо , в основном, не выбрасывается. Оно остается в центральном ядре и превращается в нейтронную звезду или чёрную дыру . Но выбрасываются химические элементы тяжелее железа . Железо выбрасывается при других взрывах. Взрываться могут белые карлики, то что остается, например, от Солнца. Сам по себе белый карлик очень стабильный объект. Но у него есть предельная масса, когда он эту устойчивость теряет. Начинается термоядерная реакция горения углерода .

Взрыв Сверхновой

И если обычная звезда, это очень стабильный объект. Вы её чуть-чуть нагрели в центре, она на это отреагирует, она расширится. Упадет температура в центре, и всё она себя отрегулирует. Как бы в её ни грели или ни охлаждали. А вот белый карлик так не умеет. Вы запустили реакцию, он хочет расшириться, а не может. Поэтому термоядерная реакция быстро охватывает весь белый карлик и он целиком взрывается. Получается взрыв Сверхновой типа 1А и это очень хорошая очень важная Сверхновая. Они позволили открыть ускоренное расширение Вселенной . Но самое главное, что при этом взрыве карлик разрушается полностью и там синтезируется много железа . Всё желез о вокруг, все гвозди, гайки, топоры и все железо внутри нас, можно уколоть палец и посмотреть на него или попробовать на вкус. Так вот всё это железо взялось из белых карликов.

Происхождение тяжёлых химических элементов

Но есть ещё более тяжелые элементы. Где же синтезируется они? Долгое время считалось, что основное место синтеза более тяжелых элементов , это взрывы Сверхновых , связанных с массивными звёздами. Во время взрыва, то есть когда есть много лишней энергии, когда летают всякие лишние нейтроны , можно проводить реакции, которые энергетически невыгодны. Просто условия так сложились и в этом, разлетающемся веществе, могут идти реакции, синтезирующие достаточно тяжёлые химические элементы . И они действительно идут. Многие химические элементы , тяжелее железа, образуются именно таким способом.

Кроме того, даже не взрывающиеся звезды, на определенном этапе своей эволюции, когда они превратились в красных гигантов могут синтезировать тяжелые элементы . В них идут термоядерные реакции, в результате которых образуется немножко свободных нейтронов. Нейтрон , в этом смысле, очень хорошая частица, поскольку заряд у неё нет, она может легко проникать в атомное ядро. И проникнув в ядро, потом нейтрон может превратиться в протон . И соответственно элемент перепрыгнет на следующую клеточку в таблице Менделеева . Этот процесс довольно медленный. Он называется s-процесс , от слова slow-медленный. Но он достаточно эффективный и многие химические элементы синтезируются в красных гигантах именно способом. А в Сверхновых идет r- процесс , то есть быстрый. По сколько, действительно всё происходит за очень короткое время.

Недавно оказалось, что есть ещё одно хорошее место для r-процесса, несвязанное со взрывом Сверхновой . Есть ещё одно очень интересное явление - это слияние двух нейтронных звёзд. Звёзды очень любят рождаться парами, а массивные звезды рождаются, по большей части, парами. 80-90% массивных звезд рождаются в двойных системах. В результате эволюции, двойные могут разрушаться, но какие-то доходят до конца. И если у нас в системе было 2 массивных звезды, мы можем получить систему из двух нейтронных звёзд. После этого они будут сближаться за счет излучения гравитационных волн и в конце концов сольются.

Представьте, вы берите объект размером 20 км с массой полторы массы Солнца, и почти со скоростью света , роняете его на другой такой же объект. Даже по простой формуле кинетическая энергия равняется (mv 2)/2 . Если в качестве m вы подставить скажем 2 массы Солнца, в качестве v поставить треть скорости света , вы можете посчитать и получите совершенно фантастическую энергию . Она будет выделяться и в виде гравитационных волн, по всей видимости в установке LIGO уже видят такие события, но мы ещё об этом не знаем. Но при этом, поскольку сталкиваются реальные объекты, происходит действительно взрыв. Выделяется много энергии в гамма-диапазоне , в рентгеновском диапазоне. В общем-то всех диапазонах и часть этой энергии идет на синтез химических элементов .


Происхождение химических элементов во Вселенной

Создание химических элементов на Земле

Все знают периодическую таблицу химических элементов — таблицу Менделеева . Там элементов достаточно много и непрерывно физики трудятся над тем, чтобы создать всё более и более тяжёлые трансурановые элементы . Есть много интересного в ядерной физике, связанного с устойчивостью этих ядер. Есть всякие острова стабильности и люди, работающие на соответствующих ускорителях, пытаются создать химические элементы с очень большими атомными числами. Но все эти элементы живут очень недолго. То есть можно создать несколько ядер этого элемента , успеть что-то исследовать, доказать что вы его вправду синтезировали и открыли этот элемент . Получите право присвоить ему какое-то имя, может быть получите Нобелевскую премию. Но в природе этих химических элементов кажется нет, но на самом деле они могут в каких-то процессах возникать. Но совершенно в ничтожных количествах и за короткое время распадаются. Поэтому во Вселенной , в основном, мы видим элементы начиная с урана и легче.

Эволюция Вселенной

Но Вселенная наша эволюционирует. И вообще, как только вы пришли к идее какого-то глобального изменения, вы неизбежно приходите к мысли о том, что всё что вы видите вокруг, в том или ином смысле, становится бренным. И если, в смысле людей, зверей и вещей мы как-то с этим смирились, то сделать следующий шаг, иногда, кажется странным. Например, вода то она всегда вода или железо оно всегда железо?! Ответ нет, поскольку эволюционирует Вселенная в целом и когда-то, естественно, не было, например, земли и все её составные части были разбросаны по какой-нибудь туманности, из которой складывалась Солнечная система. Нужно идти ещё и ещё дальше назад и окажется, что когда-то не было, не только Менделеева и его периодической таблицы, но не было никаких элементов в неё входящих. Так как наша Вселенная родилась, пройдя через очень горячее, через очень плотное состояние. А когда горячо и плотно, всё сложные структуры разрушаются. И поэтому, в очень ранней истории Вселенной не существовало стабильно никаких, привычных для нас, веществ или даже элементарных частиц.

Происхождение лёгких химических элементов во Вселенной

Образование химического элемента — водорода

По мере того, как Вселенная расширялась , остывала и становилась менее плотной, появлялись какие-то частицы. Грубо говоря, каждой массе частицы, мы можем сопоставить энергию по формуле E=mc 2 . Каждой энергии мы можем сопоставить температуру и когда температура падает ниже этой критичной энергии, частица может становиться стабильной и может существовать.
Соответственно Вселенная расширяется , остывает и из таблицы Менделеева первым естественно появляется водород . Потому что это просто протон. То есть появились протоны, и мы можем сказать, что появился водород . В этом смысле Вселенная на 100% состоит из водорода, плюс тёмное вещество, плюс тёмная энергия, плюс многое излучения. Но из обычного вещества есть только водород . Появляются протоны , начинают появляться нейтроны . Нейтроны немножечко тяжелее протонов и это приводит к тому, что нейтронов появляется немножко меньше. Чтобы какие-то временные факторы в голове были, мы говорим ещё о первых долях секунды жизни Вселенной .

«Первые три минуты»
Появились протоны и нейтроны , вроде бы горячо и плотно. И с протона и нейтрона можно начать термоядерные реакции, как в недрах звёзд. Но на самом деле, ещё слишком горячо и плотно. Поэтому надо чуть-чуть подождать и где-то с первых секунд жизни Вселенной и до первых минут. Есть книжка Вайнберга известная, называется «Первые три минуты» и она посвящена вот этому этапу в жизни Вселенной .

Происхождение химического элемента — гелия

В первые минуты начинают идти термоядерные реакции, потому что вся Вселенная похожа на недра звезды и термоядерные реакции могут идти. Начинают образовываться изотопы водорода дейтерий и соответственно тритий . Начинают образовываться более тяжелые химические элементы гелий . А вот дальше двигаться трудно, потому что стабильных ядер с числом частиц 5 и 8 нет. И получается такая вот сложная затыка.
Представьте, что у вас комната усыпана детальками от лего и вам нужно бегать и собирать структуры. Но детальки разбегаются или комната расширяется, то есть, как-то всё движется. Вам трудно собирать детальки, да ещё вдобавок, например, вот две вы сложили, потом ещё две сложили. А вот приткнуть пятую не получается. И поэтому за эти первые минуты жизни Вселенной , в основном, успевает сформироваться только гелий , немножко лития , немножко дейтерия остаётся. Он просто сгорает в этих реакциях, превращается в тот же гелий .
Так, что в основном Вселенная оказывается, состоящей из водорода и гелия , спустя первые минуты своей жизни. Плюс совсем небольшое количество элементов немножко более тяжёлых. И как бы всё, на этом первоначальный этап формирования таблицы Менделеева закончился. И наступает пауза, пока не появятся первые звезды. В звёздах опять получается горячо и плотно. Создаются условия для продолжения термоядерного синтеза . И звёзды большую часть своей жизни, занимаются синтезом гелия из водорода . То есть всё равно игра с первыми двумя элементами. Поэтому из-за существования звёзд, водорода становится меньше, гелия становится больше. Но важно понимать, что по большей части, вещество во Вселенной находится не в звёздах. В основном обычное вещество разбросано по всей Вселенной в облаках горячего газа, в скоплениях галактик, в волокнах между скоплений. И этот газ может быть никогда не превратится в звёзды, то есть в этом смысле, Вселенная всё равно останется, в основном, состоящей из водорода и гелия . Если мы говорим об обычном веществе, но на фоне этого, на уровне процентов, количество лёгких химических элементов падает, а количество тяжёлых элементов растет.

Звёздный нуклеосинтез

И так после эпохи первоначального нуклеосинтеза , наступает эпоха звёздного нуклеосинтеза , который идёт и в наши дни. В звезде, в начале водород превращается в гелий . Если условия позволят, а условия это температура и плотность, то пойдут следующие реакции. Чем дальше мы продвигаемся по таблице Менделеева, тем труднее начинать эти реакции, тем более экстремальные условия нужны. Условия создаются в звезде сами по себе. Звезда сама на себя давит, ее гравитационная энергия уравновешивается с её внутренней энергией, связанной с давлением газа и изучением. Соответственно, чем тяжелее звезда, тем сильнее она себя сдавливает и получает более высокую температуру и плотность в центре. И там могут идти следующие атомные реакции .

Химическая эволюция звёзд и галактик

В Солнце после синтеза гелия , запустится следующая реакция, будет образовываться углерод и кислород . Дальше реакции не пойдут и Солнце превратится в кислородно-углеродный белый карлик . Но при этом внешние слои Солнца, уже обогащённые реакция синтеза, будут сброшены. Солнце превратится в планетарную туманность, внешние слои разлетятся. И по большей части, вот так сброшенное вещество, после того, как она перемешается с веществом межзвёздной среды, сможет войти в состав следующего поколения звёзд. Так что у звёзд есть такая вот эволюция. Есть химическая эволюция галактик , каждые следующие образующиеся звёзды, в среднем, содержат всё больше и больше тяжелых элементов. Поэтому самые первые звёзды, которые образовывались из чистого водорода и гелия , они, например, не могли иметь каменных планет. Потому что их не из чего было делать. Нужно было, чтобы прошел цикл эволюции первых звёзд и здесь важно, что быстрее всего эволюционируют массивные звёзды.

Происхождение тяжёлых химических элементов во Вселенной

Происхождение химического элемента — железа

Солнце и его полное время жизни почти 12 млрд лет. А массивные звезды живут несколько миллионов лет. Они доводят реакции до железа , и в конце своей жизни взрываются. При взрыве, кроме самого внутреннего ядра, всё вещество оказывается сброшено и поэтому наружу сбрасывается большое количество, естественно, и водорода , который остался не переработанным во внешних слоях. Но важно, что выбрасывается большое количество кислорода , кремния , магния , то есть уже достаточно тяжелых химических элементов , чуть-чуть не доходящих до железа и, родственных ему, никеля и кобальта . Очень выделенные элементы. Может быть, со школьных времен памятна такая картинка: номер химического элемента и выделение энергии при реакциях синтеза или распада и там получается такой максимум. И железо, никель, кобальт находятся на самой верхушке. Это означает, что распад тяжелых химических элементов выгоден до железа , синтез из лёгких тоже выгоден до железа. Дальше энергию нужно тратить. Соответственно мы двигаемся со стороны водорода, со стороны лёгких элементов и реакция термоядерного синтеза в звездах могут доходить до железа. Они должны идти с выделением энергии.
При взрыве массивной звезды, железо , в основном, не выбрасывается. Оно остается в центральном ядре и превращается в нейтронную звезду или чёрную дыру . Но выбрасываются химические элементы тяжелее железа . Железо выбрасывается при других взрывах. Взрываться могут белые карлики, то что остается, например, от Солнца. Сам по себе белый карлик очень стабильный объект. Но у него есть предельная масса, когда он эту устойчивость теряет. Начинается термоядерная реакция горения углерода .


Взрыв Сверхновой
И если обычная звезда, это очень стабильный объект. Вы её чуть-чуть нагрели в центре, она на это отреагирует, она расширится. Упадет температура в центре, и всё она себя отрегулирует. Как бы в её ни грели или ни охлаждали. А вот белый карлик так не умеет. Вы запустили реакцию, он хочет расшириться, а не может. Поэтому термоядерная реакция быстро охватывает весь белый карлик и он целиком взрывается. Получается взрыв Сверхновой типа 1А и это очень хорошая очень важная Сверхновая. Они позволили открыть . Но самое главное, что при этом взрыве карлик разрушается полностью и там синтезируется много железа . Всё желез о вокруг, все гвозди, гайки, топоры и все железо внутри нас, можно уколоть палец и посмотреть на него или попробовать на вкус. Так вот всё это железо взялось из белых карликов.

Происхождение тяжёлых химических элементов

Но есть ещё более тяжелые элементы. Где же синтезируется они? Долгое время считалось, что основное место синтеза более тяжелых элементов , это взрывы Сверхновых , связанных с массивными звёздами. Во время взрыва, то есть когда есть много лишней энергии, когда летают всякие лишние нейтроны , можно проводить реакции, которые энергетически невыгодны. Просто условия так сложились и в этом, разлетающемся веществе, могут идти реакции, синтезирующие достаточно тяжёлые химические элементы . И они действительно идут. Многие химические элементы , тяжелее железа, образуются именно таким способом.
Кроме того, даже не взрывающиеся звезды, на определенном этапе своей эволюции, когда они превратились в красных гигантов могут синтезировать тяжелые элементы . В них идут термоядерные реакции, в результате которых образуется немножко свободных нейтронов. Нейтрон , в этом смысле, очень хорошая частица, поскольку заряд у неё нет, она может легко проникать в атомное ядро. И проникнув в ядро, потом нейтрон может превратиться в протон . И соответственно элемент перепрыгнет на следующую клеточку в таблице Менделеева . Этот процесс довольно медленный. Он называется s-процесс , от слова slow-медленный. Но он достаточно эффективный и многие химические элементы синтезируются в красных гигантах именно способом. А в Сверхновых идет r- процесс , то есть быстрый. По сколько, действительно всё происходит за очень короткое время.
Недавно оказалось, что есть ещё одно хорошее место для r-процесса, несвязанное со взрывом Сверхновой . Есть ещё одно очень интересное явление — это слияние двух нейтронных звёзд. Звёзды очень любят рождаться парами, а массивные звезды рождаются, по большей части, парами. 80-90% массивных звезд рождаются в двойных системах. В результате эволюции, двойные могут разрушаться, но какие-то доходят до конца. И если у нас в системе было 2 массивных звезды, мы можем получить систему из двух нейтронных звёзд. После этого они будут сближаться за счет излучения гравитационных волн и в конце концов сольются.
Представьте, вы берите объект размером 20 км с массой полторы массы Солнца, и почти со скоростью света , роняете его на другой такой же объект. Даже по простой формуле кинетическая энергия равняется (mv 2)/2 . Если в качестве m вы подставить скажем 2 массы Солнца, в качестве v поставить треть скорости света , вы можете посчитать и получите совершенно фантастическую энергию . Она будет выделяться и в виде гравитационных волн, по всей видимости в установке LIGO уже видят такие события, но мы ещё об этом не знаем. Но при этом, поскольку сталкиваются реальные объекты, происходит действительно взрыв. Выделяется много энергии в гамма-диапазоне , в рентгеновском диапазоне. В общем-то всех диапазонах и часть этой энергии идет на синтез химических элементов .

Происхождение химического элемента — золота

Происхождение химического элемента золота
И современные расчёты, они наблюдениями окончательно подтверждены, показывают, что, например, золото рождается именно в таких реакциях. Такой экзотический процесс, как слияние двух нейтронных звёзд, действительно экзотический. Даже в такой большой системе, как наша Галактика , происходит где-то раз в 20-30 тысяч лет. Кажется довольно редко, тем не менее, хватает чтобы что-то насинтезировать. Ну или наоборот, можно сказать, что происходит так редко, и поэтому золото такое редкое и дорогое. И вообще видно, что многие химические элементы оказываются достаточно редкими, хотя они для нас часто важнее. Есть всякие редкоземельные металлы, которые используются в ваших смартфонах, а современный человек скорее обойдется без золота, чем без смартфона. Вот всех этих элементов мало, потому что они рождаются в каких-то редких астрофизических процессах. И по большей части все эти процессы, так или иначе, связаны со звездами, с их более или менее спокойной эволюцией, но с поздними стадиями, взрывами массивных звёзд, со взрывами белых карликов или состояниями нейтронных звёзд .

Месяц назад, 16 октября, от гравитационно-волновых обсерваторий «LIGO», «Virgo» и целого ряда иных крупных международных научных групп поступило сообщение касательно крайне значимого для астрономии современности открытия. Свыше 70 обсерваторий, специализирующихся в плане всех диапазонов электромагнитного спектра, а ещё все 3 функционирующие гравитационно-волновые обсерватории в первый раз подробно продемонстрировали информацию касательно слияния двух звёзд нейтронного типа. В данном материале мы поведаем, что же именно увидели учёные и какие ответы касательно вопросов о нашей Вселенной были получены благодаря новому исследованию.

Как всё это было?

В этом году, 17 августа, в 15:41:04 по Москве детектор обсерватории «LIGO», находящейся в Хенфорде, что в Вашингтоне, уловил рекордно длинную волну гравитации. Сигнал длился приблизительно сто секунд. Это весьма большой временной промежуток, ведь прежние 4 фиксации волн гравитации длились не больше трёх секунд. В этом случае сработала автоматическая программ оповещения. Астрономами осуществлена проверка сведений, в результате чего было выявлено, что, оказывается, 2-ой детектор «LIGO», располагаемый в Луизиане, тоже уловил волну, но в этом же случае автоматический триггер не сработал ввиду краткосрочных шумов.

На 1,7 сек. позднее первого детектора, независимо от него же, сработала автоматическая система телескопов «Интеграл» и «Ферми», являющихся космическими гамма-обсерваториями, наблюдающими за одними из самых высокоэнергетических событий всей Вселенной. Приборами была зафиксирована яркая вспышка и приблизительно определены её же координатные данные. Вспышка же здесь длилась всего-навсего 2 сек. в отличие от сигнала гравитации. Примечательно, что российско-европейским «Интегралом» был замечен гамма-всплеск, так сказать, «боковым зрением», то есть «защитными кристаллами» главного детектора. Однако, это не стало помехой процессу триангуляции сигнала.

Приблизительно спустя час «LIGO» распространила информацию касательно потенциально возможных координатных данных источника волн гравитации. Установка данной области осуществилась за счёт того, что сигнал был замечен и детектором «Virgo». Задержки, с которыми устройства получали сигнал, сказали, что, скорее всего, источник располагается на юге, ведь сначала сигнал уловил «Virgo», а только после этого, как прошло 22 миллисекунды, его зафиксировала и обсерватория «LIGO». Изначально область, которую рекомендовали в целях поиска, доходила до 28 квадратных градусов. Этот показатель эквивалентен сотням лунных площадей.

На следующем этапе было осуществлено объединение информации гамма- и гравитационных обсерваторий в единое целое и начался поиск точного источника излучения. Физиками было инициировано в миг несколько оптических поисков, ведь и гамма-телескопы, и гравитационные обсерватории не давали возможности нахождения требуемой точки с высокой точностью.

Один из поисков осуществлялся посредством применения роботизированной системы телескопов под названием «МАСТЕР», которая была создана в ГАИШ МГУ.

Именно чилийский метровой телескоп «Swope» сумел найти среди тысяч потенциальных кандидатов требуемую вспышку. Он это сделал спустя 11 ч. после гравитационных волн. Астрономами была зафиксирована новая светящаяся точка в галактике «NGC 4993», находящейся в созвездии Гидры. Яркость данной точки была не выше 17 звёздной величины. Подобный объект находится в доступности для наблюдения с применением полупрофессиональных телескопов.

Спустя приблизительно час после этого, невзирая на «Swope», источник был найден ещё четырьмя обсерваториями, включая телескоп сети «МАСТЕР» из Аргентины. Затем же и началась глобальная наблюдательная компания, в которой задействовали телескопы Южной европейской обсерватории, такие знаменитые аппараты, как «Чандра» и «Хаббл», массив радиотелескопов VLA и ещё куча иных приборов. В совокупности за развитием событие наблюдали 70 учёных коллективов. Спустя 9 дней астрономы сумели добиться получения изображения в рентгеновском диапазоне, а через 16 же дней – даже в радиочастотном. Через какое-то время светило стало ближе к галактике, а в сентябре же наблюдения оказались невозможными.

Почему произошёл взрыв?

Столь характерную картину взрыва во множестве электромагнитных диапазонов предсказали и описали уже давно. В ней показывается столкновение двух звёзд нейтронного типа, являющихся ультракомпактными объектами, состоящими из нейтронной материи.

Учёные утверждают, что масса звёзд нейтронного типа доходит до 1,1 и 1,6 солнечной массы, что в сумме даёт 2,7. Впервые волны гравитации образовались при достижении расстояния между объектами в 300 км.

Неожиданным оказалось малое расстояние от данной системы до нас. Оно равнялось 130 млн. световых лет, а ведь это всего лишь в 50 раз больше, нежели расстояние от нас до туманности Андромеды, а также практически на порядок наоборот меньше расстояния от нас до чёрных дыр, которые столкнулись, как нам показывают «LIGO» и «Virgo». Также столкновение это выступили самым близким к нам источником короткого гамма-всплеска.

Что представляют собой звёзды нейтронного типа?

Эти уникальные звёзды формируются при так называемых коллапсах гигантов и сверхгигантов, имеющих массы, в 10-25 раз превышающие солнечную массу. Как можно описать их рождение? Вначале на определённом этапе масса звёздного ядра становится выше предела Чандрасекара, равного 1,4 массы Солнца. В этот момент как раз происходит нарушение равновесия между ядерной гравитацией, которая притягивает внешний слой звезды, и давлением электронов, которое выступает препятствием для процесса сжатия. Звезда же начинает сжатие, то есть коллапсирование. Показатели плотности и температуры ядерного вещества внезапно повышаются, протоны начинают захватывать электроны в результате чего образуются нейтроны, и при этом происходит выброс нейтрино. Спустя определённого время ядро уже почти полностью представляет собой множество нейтронов.

Энергетические выбросы, возникающие вследствие протон-электронных соединений, приводят к разрыву звёздной оболочки и уносят её же материал. Таким образом, возникает как раз взрыв сверхновой. В результате мы видим плотное ядро, имеющее тонкую оболочку и состоящее из нейтронов. Показатель плотности звезды нейтронного типа огромен. Его находят только через давление вырожденных нейтронов. Он доходит до значения 4–6×1017 кг/м3. Одна капля нейтронной материи, равная 0,030 миллилитра, по весу превышает десяток млн. т. Это сравнимо с сотней доверху загруженных поездов грузового назначения. В то же время характерные размеры таких звёзд не так уж велики – всего где-то около 10 км. в одном дм. Отметим, что такая звезда может быть помещена даже в московской Третье транспортное кольцо.

Помимо большого показателя плотности, у звёзд такого типа имеются мощные магнитные поля. Индукция их достигает тысячи-триллионы тесла, а ведь земное магнитное поле не превышает по этому показателю и 0,065 тесла. У части таких звёзд после взрыва появляется большой угловой момент. Таким образом образуются такие уникальные объекты, как пульсары.

В настоящее время учёные не пришли ещё к единой картине устройства нейтронной материи. Не было ещё построено специальное уравнение её состояния. Вместе с тем есть информация, что у «Нейтрония» имеются такие свойства, как сверхтекучесть и сверхпроходимость.

Двойные же звёзды нейтронного типа знают уже с 1974 г. Одна из подобных систем в то время была открыта нобелевскими лауреатами Расселом Халсом и Джозефом Тейлором. Но все известные двойные такие звёзды всё ещё были расположены в нашей же галактике, а стабильности их орбиты хватало, чтобы они не соударились друг с другом на протяжении обозримых миллионов лет. Новая пара звёзд была сближена настолько, что это запустили процесс взаимодействия, а там и переноса вещества.

Событие назвали килоновой. Если говорить дословно, это выглядит так, что яркость вспышки была приблизительно в тысячу раз большей по мощности, нежели обычные вспышки новых звёзд, являющихся двойными системами, где компактный компаньон занимается перетягиванием на себя же материи.

Полное собрание сведений уже даёт возможность учёным считать данное событие ураеугольным камнем будущей гравитационно-волновой астрономии. Результаты обработки информации заложили основу в написание в течение двух месяцев примерно 30 статей в популярных журналах. Таким образом, 7 статей опубликовали в «Nature», 7 – в «Science», а другие же работы были обнародованы в «Astrophysical Journal Letters» и прочих изданиях научной тематики. В качестве соавторов одной из данных статей выступило 4600 астрономов из совершенно разных коллабораций. Это число астрономов составляет свыше трети астрономов по всему миру.

Итак, мы дошли до ключевых вопросов, на которые учёные со всей серьёзности сумели дать настоящий ответ.

Что способствует запуску коротких гамма-всплесков?

Гамма-всплески являются одними из самых высокоэнергетических явлений во всей Вселенной. По мощности один такой всплеск достигает такого значения, что за секунды способно выбросить в окружающую среду энергию, равную по количеству солнечной, генерируемой в течение десятка млн. лет. Принято разделять короткие гамма-всплески от длинных. В то же время считают, что это совершенно разные по своему принципу явления. Например, в качестве источника длинных всплесков выступают коллапсы звёзд огромных масс.

В качестве же источника коротких гамма-всплесков, согласно некоторым предположениям, считают слияния звёзд нейтронного типа. Но всё ещё не было прямых подтверждений этим предположениям. Новые же наблюдения уже являются весьма веским в настоящее время доказательством существования данного механизма.

Как во Вселенной возникают золото и прочие тяжёлые элементы?

Нуклеосинтез является слиянием звёздных ядер в самих светилах. Этот процесс даёт возможность получения огромного спектра химических элементов. В случае лёгких ядер реакции слияния проходят с выделением энергии. В общем данные реакции являются энергетически выгодными. Для элементов же, масса которых примерно как и масса железа, выигрыш в энергетическом плане уже не столь значителен. По этой причине в звёздах практически не возникают элементы, масса которых превышает массу железа. В качестве исключения можно выделить взрывы сверхновых. Однако, их отнюдь не достаточно для объяснения распространённости золота, урана, лантанидов и прочих тяжёлых элементов, образуемых по всей Вселенной.

Стоит вспомнить, что ещё в 1989 г. физиками было сделано предположение, что здесь в процессе поучаствовал r-нуклеосинтез, происходящий в слияниях звёзд нейтронного типа. Более подробно касательно этой информации можно вычитать в блоге специалиста в сфере астрофизики Марата Мусина. Доселе о данном процессе говорили лишь в теории. Теперь же всё изменилось.

Спектральные исследования нового события говорят об отчётливых следах возникновения тяжёлых элементов. Таким образом, спектрометры, огромный телескоп «VLT» и знаменитый «Хаббл» помогли астрономам в обнаружении наличия в космосе золота, цезия, платины и теллура. Ещё имеются свидетельства возникновения сурьмы, ксенома и иода. Физики привели оценочную информацию, в которой говорится, что после столкновения был произведён выброс общей массы лёгких и тяжёлых элементов, равной 40 массам Юпитера. Одно ли золото, как говорят теоретические модели, возникает столько, что это равно приблизительно 10 массам Луны.

Чему равна константа Хаббла?

Экспериментальная оценка скорости расширения Вселенной может проводиться посредством специальных «стандартных свечей», являющихся объектами, для которых известен показатель абсолютной яркости. Это означает, что соотношение между показателями абсолютной яркости и видимой позволяет сделать заключение о дальности их нахождения. Скорость расширения на такой дистанции от наблюдателя находится с применением доплеровского смещения, к примеру, водородных линий. Роль «стандартных свечей» взяли на себя роль, к примеру, сверхновые Ia типа, являющиеся «взрывами» белых карликов. Стоит добавить, что именно на их выборке и доказали факт расширения Вселенной.

Константа Хаббла же позволяет задать линейную зависимость показателя скорости расширения Вселенной на этой дистанции. Каждое из независимых определений её значения даёт возможность быть уверенными в принятой ныне космологии.

Источники волн гравитации тоже выступают как так называемые «стандартные свечи». По-иному их называют ещё «сиренами». Характер волн гравитации, создаваемые этими свечами, позволяет независимо определить дистанцию до них. Именно это и было использовано астрономами в одной из своих новых работ. Результат приравнивается и с прочими независимыми измерениями, а именно основанными на реликтовом излучении и на наблюдениях за гравитационно-линзированными объектами. Константа приблизительно остаётся равной 62-82 км. в сек. на мегапарсек. Это значит, что две галактики, что удалены на 3,2 млн. световых лет, в среднем имеют разбег со скорость в 70 км/с. Новые же слияния звёзд нейтронного типа дадут возможность увеличения точности данной оценки.

Как "устроена" гравитация?

Всеми принятая ныне общая теория относительности точно предсказывает поведение волн гравитации. Но квантовая же теория гравитации всё ещё не была разработана. Существует некоторое число гипотез касательно того, как «устроена» гравитация. Они представлены в виде теоретических конструкций с большим числом неизвестного рода параметров. Одновременное наблюдение электромагнитного излучения и волн гравитации даст возможность выявить и сделать несколько уже границы для данных параметров, а ещё отбросить какие-то гипотезы, признанные несостоятельными.

Например, существует факт того, что волны гравитации возникли за 1,7 сек. до гамма-квантов. Это как раз и говорит, что они в действительности расходятся со скоростью света. Также саму величину задержки можно применить в целях проверки принципа эквивалентности, что лежит в основе ОТО.

Как устроены звёзды нейтронного типа?

Нам известно строение таких звёзд только в общих чертах, поверхностно. Они имеют кору, состоящую из тяжёлых элементов, а также ядро, в основе которого, как мы и сказали выше, лежат нейтроны. Однако, мы всё ещё не знаем уравнения состояния нейтронной материи в самом ядре. А ведь это важно, так как именно это поможет понять, что же было образовано во время столкновения, наблюдавшегося астрономами.

Как и по отношению к белым карликам, так и к звёздам нейтронного типа мы можем применить понятие критической массы. При превышении данной массы есть риск начала процесса коллапса. По мере того, превысила ли масса нового тела критическую отметку или же нет, имеется несколько вариантов последующего развития событий. Если суммарно масса будет излишне большой, объект внезапно станет коллапсировать в чёрную дыру. Если же масса несколько меньше, есть риск возникновения неравновесной быстровращающейся звезды нейтронного типа, которая так же с течением времени коллапсирует в чёрную дыру. В качестве альтернативы здесь можно рассмотреть образование магнетара. Это быстровращающаяся звезда нейтронного типа, имеющая огромное магнитное поле. Видимо, магнетар не был образован в столкновении, и учёные не сумели зафиксировать сопутствующее ему излучение рентгеновского типа.

Владимир Липунов, являющийся руководителем сети «МАСТЕР», ныне информации не хватает для выяснения, что же там возникло вследствие слияния. Но астрономы уже собираются предоставить несколько теорий и планируют выложить их на публику в ближайшие дни. Вероятно, благодаря будущим слияниям звёзд учёные сумеют выявить искомую критическую массу.

Валерий Митрофанов, являющийся профессоров физического факультета МГУ им. М. В. Ломоносова, высказался, что в обозримом будущем они (учёные) ожидают регистрации волн гравитации и от прочих источников, например, от непрерывных источников излучения, стохастических волн и гравитационного реликтового излучения, но для таких целей потребуется существенное повышение чувствительности детекторов. Также он отметил, что ещё весьма интересно на сегодняшний день заниматься поисков новых неизведанных источников.

Сверхплотное состояние Вселенной длилось недолго, но оно сыграло решающую роль в последующем развитии. При огромных значениях температуры и плотности вещества начались интенсивные процессы взаимопревращения частиц и квантов излучения. На первых порах в одинаковых количествах рождались частицы и соответствующие им античастицы из фотонов высокой энергии. В условиях сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были бы тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц.

На ранних этапах развития Вселенной могли возникать чрезвычайно короткоживущие и очень массивные гипотетические частицы. С падением температуры и плотности (возраст достиг 0,01 сек, температура 10 11 К) стали возникать менее массивные частицы, в то время как более массивные “вымирали” за счёт аннигиляции или распада.

Вымирание частиц происходило не совсем одинаково, так что античастицы практически все исчезли, а ничтожная избыточная доля протонов и нейтронов осталась. В результате этого наблюдаемый мир оказался устроенным из вещества, а не из антивещества, хотя где-то во Вселенной могут быть и области из антивещества.

Без едва заметной ассиметрии свойств частиц и античастиц мир вообще оказался бы лишённым вещества.

Образованием нуклонов (протонов и нейтронов) завершается эра адронов эволюции Вселенной (адроны - частицы, подверженные сильным взаимодействиям: протоны, нейтроны, мезоны и т.д.). После адронной эры наступает эра лептонов, когда среда состоит преимущественно из положительных и отрицательных мюонов, нейтрино и антинейтрино, позитронов и электронов. Нуклоны встречаются редко. По мере дальнейшего расширения Вселенной происходит аннигиляция мюонов, электронов и позитронов. Затем прекращается взаимодействие нейтрино с веществом и к моменту 0,2 секунды после сингулярности, происходит отрыв нейтрино.

Примерно через 10 секунд после сингулярности температура достигает значения около 10 10 К и начинается эра излучения. На этом этапе по численности преобладают фотоны, всё ещё сильно взаимодействующие с веществом, а также нейтрино.

Огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиляции, оставив после себя незначительное количество электронов, достаточное, однако, чтобы объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.

Через 3 минуты после Большого Взрыва начинаются первые процессы нуклеосинтеза. Некоторая часть протонов успевает соединиться с нейтронами и образовать ядра гелия. В них перешло около 10% общего числа протонов. Эра излучения заканчивается переходом плазмы из ионизованного состояния в нейтральное, уменьшением непрозрачности вещества и “отрывом” излучения. Через минуту почти всё вещество Вселенной состояло из ядер водорода и гелия, находившихся в такой же пропорции, которую мы наблюдаем сегодня. Начиная с этого момента расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700 000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрачной для электромагнитного излучения - возникло реликтовое фоновое излучение.

Через миллион лет после начала расширения начинается эра вещества, когда из горячей водородно-гелиевой плазмы с малой примесью других ядер стало развиваться многообразие нынешнего мира.

После того, как вещество стало прозрачно для электро-магнитного излучения, в действие вступило тяготение, оно стало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звёзды и планеты.

В этой картине остаётся много нерешённых вопросов. Образовались ли галактики раньше первого поколения звёзд или наоборот? Почему вещество сосредоточилось в дискретных образованиях - звёздах, галактиках, скоплениях, тогда как Вселенная как целое разлеталась в разные стороны?

Неоднородности во Вселенной, из которых впоследствии образовались все структурные образования Вселенной зародились в виде ничтожных флуктуаций, а затем усилились в эпоху, когда ионизованный газ во Вселенной стал превращаться в нейтральный, т.е. когда излучение оторвалось от вещества и стало реликтовым. Такое усиление может привести к возникновению заметных флуктуаций, из которых впоследствии стали образовываться галактики.

При образовании крупных структур Вселенной существенную роль могли играть нейтрино, если их масса покоя отлична от нуля. Через несколько сотен лет после начала расширения скорость нейтрино, обладающих массой, должна стать заметно меньше световой. Начиная с некоторого момента, крупные сгущения нейтрино уже не рассасываются и дают начало крупным структурным образованиям Вселенной - скоплениям и сверхскоплениям галактик. Сами галактики образуются из обычного вещества, а нейтрино, если они обладают заметной массой, выступают в роли центров притяжения для гигантских сгущений масс, являясь источником скрытой массы скоплений галактик.

В 1978 году М. Рис высказал предположение, что фоновое излучение может быть результатом “эпидемии” образования массивных звёзд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд лет. Продолжительность жизни таких звёзд не могла превышать 1 млрд лет. Многие из них взорвались как сверхновые и выбросили в пространство тяжёлые химические элементы, которые частично собрались в крупицы твёрдого вещества, образовав облака межзвёздной пыли. Эта пыль, нагретая излучением догалактических звёзд, могла испускать инфракрасное излучение, которое наблюдается сейчас как микроволновое фоновое излучение. Если эта гипотеза верна, то это означает, что подавляющее количество всей массы Вселенной содержится в невидимых остатках звёзд первого, догалактического, поколения и в настоящее время может находиться в массивных тёмных гало, окружающих яркие галактики.

error: