Органическая химия изучает соединения водорода. Основные понятия и законы органической химиии. Радикалыобразованных от алканов

Органическая химия - раздел химии, изучающий соединения углерода, их структуру, свойства, методы синтеза, а также законы их превращений. Органическими называют соединения углерода с другими элементами (в основном с H, N, O, S, P, Si, Ge и др.).

Уникальная способность атомов углерода связываться друг с другом, образуя цепочки различной длины, циклические структуры разного размера, каркасные соединения, соединения со многими элементами, различные по составу и строению, обусловливает многообразие органических соединений. К настоящему времени число известных органических соединений на много превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Окружающий нас мир построен в основном из органических соединений, к ним относятся: пища, одежда, топливо, красители, лекарства, моющие средства, материалы для самых различных отраслей техники и народного хозяйства. Органические соединения играют ключевую роль в существовании живых организмов.

На стыке органической химии с неорганической химией, биохимией и медициной возникли химия метало- и элементорганических соединений, биоорганическая и медицинская химия, химия высокомолекулярных соеди-нений.

Основным методом органической химии является синтез. Органическая химия изучает не только соединения, полученные из растительных и животных источников (природные вещества), но в основном соединения, созданные искусственно с помощью лабораторного и промышленного синтеза.

История развития органической химии

Способы получения различных органических веществ были известны ещё с древности. Так, египтяне и римляне использовали красители растительного проис-хож-де-ния - индиго и ализарин. Многие народы владели секретами производства спиртных на-пит-ков и уксуса из сахар- и крахмалсодержащего сырья.

Во времена средневековья к этим знаниям практически ничего не прибавилось, некоторый прогресс начался только в 16-17 веках (период ятрохимии), когда путем перегонки растительных продуктов были выделены новые органические соединения. В 1769-1785 г. К.В. Шееле выделил несколько органических кислот: яблочную, винную, лимонную, галловую, молочную и щавелевую. В 1773 г. Г.Ф. Руэль выделил мочевину из человеческой мочи. Выделенные из животного и растительного сырья вещества имели между собой много общего, но отличались от неорганических соединений. Так возник термин «Органическая химия» - раздел химии, изучающий вещества, выделенные из организмов (определение Й.Я . Берцелиуса , 1807 г.). При этом полагали, что эти вещества могут быть получены только в живых организмах благодаря «жизненной силе».

Принято считать, что органическая химия как наука появилась в 1828 г., когда Ф. Вёлер впервые получил органическое вещество - мочевину - в результате упаривания водного раствора неорганического вещества - цианата аммония (NH 4 OCN). Дальнейшие экспериментальные работы продемонстрировали неоспоримые аргументы несосто-ятельности теории «жизненной силы». Так, например, А. Кольбе синтезировал уксусную кислоту, М. Бертло получил метан из H 2 S и CS 2 , а А.М. Бутлеров синтезировал сахарис-тые вещества из формалина.

В середине 19 в. продолжается бурное развитие синтетической органической хи-мии, создаются первые промышленные производства органических веществ (А. Гофман, У. Перкин-старший - синтетические красители, фуксин, цианиновые и азакрасители). Усовершенствование открытого Н.Н. Зининым (1842 г.) способа синтеза анилина послужило основой для создания анилинокрасочной промышленности. В лаборатории А. Байера были синтезированы природные красители - индиго, ализарин, индигоидные, ксантеновые и антрахиноновые.

Важным этапом в развитии теоретической органической химии стала разработка Ф.А. Кекуле теории валент-ности в 1857 г., а также классической теории химического строения А.М . Бутлеровым в 1861 г., согласно которой атомы в молекулах соединяются в соответствии с их валентностью, химические и физические свойства соединений определяются природой и числом входящих в них атомов, а также типом связей и взаимным влиянием непосредственно несвязанных атомов. В 1865 г. Ф . Кекуле предложил структурную форму-лу бензола, что стало одним из важнейших открытий в органической химии. В.В. Марковников и А.М. Зайцев сформулировали ряд правил, впервые связавших направление органических реакций со строением вступающих в них веществ. В 1875 г. Вант-Гофф и Ле Бель предложили тетраэдрическую модель атома углерода, по которой валентности углерода направлены к вершинам тетраэдра, в центре которого размещён атом углерода. На основе этой модели, в сочетании с экспериментальными исследованиями И. Вислиценуса (!873 г.), показавшего идентичность структурных формул (+)-молочной кислоты (из кислого молока) и (±)-молочной кислоты, возникла стереохимия - наука о трёхмерной ориентации атомов в молекулах, которая предсказывала в случае наличия 4 различных заместителей при атоме углерода (хиральные структуры) возможность существования пространственно-зеркальных изомеров (антиподов или энантиомеров).

В 1917 г. Льюис предложил рассматривать химическую связь с помощью электронных пар.

В 1931 г. Хюккель применил квантовую теорию для объяснения свойств небензоидных ароматических систем, чем основал новое направление в органической химии - квантовую химию. Это послужило толчком для дальнейшего интенсивного развития квантовохимических методов, в частности метода молекулярных орбиталей. Этап проникновения орбитальных представлений в органическую химию открыла теория резонанса Л. Полинга (1931-1933 г.г.) и далее работы К. Фукуи, Р. Вудворда и Р. Хофмана о роли граничных орбиталей в определении направления химических реакций.

Середина 20 в. характеризуется особенно бурным развитием органического синтеза. Это определялось открытием основополагающих процессов, таких как получе-ние олефинов с использованием илидов (Г. Виттиг , 1954 г.), диеновый синтез (О. Дильс и К. Альдер , 1928 г.), гидроборирование непредельных соединений (Г. Браун , 1959 г.), синтез нуклеотидов и синтез гена (А. Тодд , Х. Корана ). Успехи в химии метало-органических соединений во многом обязаны работам А.Н. Несмеянова и Г.А. Разуваева . В 1951 г. был осуществлен синтез ферроцена, установление «сэндвичевой» структуры которого Р. Вудвордом и Дж. Уилкинсоном положило начало химии металлоценовых соединений и вообще органической химии переходных металлов.

В 20-30 г.г. А.Е. Арбузов создает основы химии фосфорорганических соединений, что впоследствии привело к открытию новых типов физиологически активных соединений, Комплексонов и др.

В 60-80 г.г. Ч. Педерсен , Д. Крам и Ж.М. Лен разрабатывают химию краун-эфиров, криптандов и других родственных структур, способных образовывать прочные молеку-ляр-ные комплексы, и тем самым подходят к важнейшей проблеме «молекулярного узнава-ния».

Современная органическая химия продолжает своё бурное развитие. В практику органического синтеза вводятся новые реагенты, принципиально новые синтетические методы и приемы, новые катализаторы, синтезируются неизвестные ранее органические структуры. Постоянно ведется поиск органических новых биологически активных соединений. Еще многие проблемы органической химии ждут своего решения, например, детальное установление взаимосвязи структура - свойства (в том числе, биологическая активность), установление строения и стереонаправленный синтез сложных природных соединений, разработка новых регио- и стереоселективных синтетических методов, поиск новых универсальных реагентов и катализаторов.

Интерес мирового сообщества к развитию органической химии ярко проде-мон-стрирован вручением Нобелевской премии по химии 2010 г. Р. Хеку, А. Судзуки и Э. Нэгиси за работы по применению палладиевых катализаторов в органическом синтезе для формирования связей углерод - углерод.

Классификация органических соединений

В основе классификации лежит структура органических соединений. Основа описания структуры - структурная формула.

Основные классы органических соединений

Углеводороды - соединения, состоящие только из углерода и водорода. Они в свою очередь делятся на:

Насыщенные - содержат только одинарные (σ-связи) и не содержат кратные связи;

Ненасыщенные - имеют в своём составе хотя бы одну двойную (π-связь) и/или тройную связь;

С открытой цепью (алициклические);

С замкнутой цепью (циклические) - содержат цикл

К ним относятся алканы, алкены, алкины, диены, циклоалканы, арены

Соединения с гетероатомами в функциональных группах - соединения, в которых углеродный радикал R связан с функциональной группой. Такие соединения классифицируют по характеру функциональной группы:

Спирт, фенолы (содержат гидроксильную группу ОН)

Простые эфиры (содержат группировку R-O-R или R-O-R

Карбонильные соединения (сожержат группировку RR"C=O), к ним относятся альдегиды, кетоны, хиноны.

Соединения, содержащие карбоксильную группу (СООН или СООR), к ним относятся карбоновые кислоты, сложные эфиры

Элемент- и металлорганические соединения

Гетероциклические соединения - содержат гетероатомы в составе цикла. Различаются по характеру цикла (насыщенный, ароматический), по числу атомов в цикле (трех-, четырёх-, пяти-, шестичленные циклы и т.д.), по природе гетероатома, по количеству гетероатомов в цикле. Это определяет огромное разнообразие известных и ежегодно синтезируемых соединений этого класса. Химия гетероциклов представляет собой одну из наиболее увлекательных и важных областей органической химии. Достаточно сказать, что более 60% лекарственных препаратов синтетического и природного происхождения относятся к различным классам гетероциклических соединений.

Природные соединения - соединения, как правило, достаточно сложного строения, зачастую принадлежащие сразу к нескольким классам органических соединений. Среди них можно выделить: аминокислоты, белки , углеводы , алкалоиды , терпены и др.

Полимеры - вещества с очень большой молекулярной массой, состоящие из периодически повторяющихся фрагментов - мономеров.

Строение органических соединений

Органические молекулы в основном образованы ковалентными неполярными связями С-С, или ковалентными полярными связями типа С-О, C-N, C-Hal. Полярность объясняется смещением электронной плотности в сторону более электроотрицательного атома. Для описания строения органических соединений химики используют язык структурных формул молекул, в которых связи между отдельными атомами обозначаются с помощью одного (простая, или одинарная связь), двух (двойная) или трёх (тройная) валентных штрихов. Понятие валентного штриха, которое не потеряло своего значения и по сей день, ввел в органическую химию А. Купер в 1858 г

Очень существенным для понимания строения органических соединений является понятие о гибридизации атомов углерода. Атом углерода в основном состоянии имеет электронную конфигурацию 1s 2 2s 2 2p 2 , на основе которой невозможно объяснить присущую углероду в его соединениях валентность 4 и существование 4 идентичных связей в алканах, направленных к вершинам тетраэдра. В рамках метода валентных связей это противоречие разрешается введением понятия о гибридизации. При возбуждении осуществляется s p переход электрона и последующая, так называемая, sp- гибридизация, причем энергия гибридизованных орбиталей является промежуточной между энергиями s - и p -орбиталей. При образовании связей в алканах три р -электрона взаимодействуют с одним s -электроном (sp 3 -гибридизация) и возникают 4 одинаковые орбитали, расположенные под тетраэдрическими углами (109 о 28") друг к другу. Атомы углерода в алкенах находятся в sp 2 -гибридном состоянии: у каждого атома углерода имеют три одинаковые орбитали, лежащие в одной плоскости под углом 120 о друг к другу (sp 2 -орбитали), а четвертая (р -орбиталь) перпендикулярна этой плоскости. Перекрывание р -орбиталей двух атомов углерода образует двойную (π) связь. Атомы углерода, несущие тройную связь находятся в sp -гибридном состоянии.

Особенности органических реакций

В неорганических реакциях обычно участвуют ионы, такие реакции проходят быстро и до конца при комнатной температуре. В органических реакциях часто происходят разрывы ковалентных связей с образованием новых. Как правило, эти процессы требуют особых условий: определённой температуры, времени реакции, определенных растворителей, и часто наличия катализатора. Обычно протекает не одна, а сразу несколько реакций, Поэтому при изо-бра-жении органических реакций используют не уравнения, а схемы без расчёта сте-хио-метрии. Выходы целевых веществ в органических реакциях зачастую не превышают 50%, а выделение их из реакционной смеси и очистка требуют специфических методов и приёмов. Для очистки твердых веществ, как правило, используют перекристаллизацию из специально подобранных растворителей. Жидкие вещества очищают перегонкой при атмосферном давлении или в вакууме (в зависимости от температуры кипения). Для контролем за ходом реакций, разделения сложных реакционных смесей прибегают к различным видам хроматографии [тонкослойная хроматография (ТСХ), препаративная высокоэффективная жидкостная хроматография (ВЭЖХ) и др.].

Реакции могут протекать очень сложно и в несколько стадий. В качестве промежуточных соединений могут возникать радикалы R·, карбкатионы R + , карбанионы R - , карбены:СХ 2 , катион-радикалы, анион-радикалы и другие активные и нестабильные частицы, обычно живущие доли секунды. Подробное описание всех превращений, происходящих на молекулярном уровне во время реакции, называется механизмом реакции . По характеру разрыва и образования связей различают радикальные (гомолитические) и ионные (гетеролитические) про-цессы. По типам превращений различают цепные радикальные реакции, реакции нуклеофильного (алифатического и ароматического) замещения, реакции элими-ни-ро-вания, электрофильного присоединения, электрофильного замещения, конденсации, циклизации, процессы перегруппировок и др. Реакции классифицируют также по способам их инициирования (возбуждения), их кинетическому порядку (моно-молекулярные, бимолекулярные и др.).

Определение структуры органических соединений

За всё время существования органической химии как науки важнейшей задачей было определить структуру органических соединений. Это значит узнать, какие атомы входят в состав структуры, в каком порядке и каким образом эти атомы связаны между собой и как расположены в пространстве.

Существует несколько методов решения этих задач.

  • Элементный анализ заключается в том, что вещество разлагают на более простые молекулы, по количеству которых можно определить количество атомов, входящих в состав соединения. Этот метод не дает возможности установить порядок связей между атомами. Часто используется лишь для подтверждения предложенной структуры.
  • Инфракрасная спектроскопия (ИК спектроскопия) и спектроскопия комбинационного рассеяния (спектроскопия КР). Метод основан на том, что вещество взаимодействует с электромагнитным излучением (светом) инфра-крас-ного диапазона (в ИК спектроскопии наблюдают поглощение, в КР спектроскопии - рассеяние излучения). Этот свет при поглощении возбуждает коле-бательные и вращательные уровни молекул. Опорными данными служат число, частота и интен-сивность колебаний молекулы, связанных с изменением дипольного момента (ИК) или поляризуемости (КР). Метод позволяет установить наличие функ-циональных групп, а также часто используется для подтверждения иден-тичности вещества с некоторым уже известным веществом путём сравнения их спектров.
  • Масс-спектрометрия . Вещество при определённых условиях (электронный удар, химическая ионизация и др.) превращается в ионы без потери атомов (моле-кулярные ионы) и с потерей (осколочные, фрагментарные ионы). Метод позволяет оп-ре-делить молекулярную массу вещества, его изотопный состав, иногда наличие функциональных групп. Характер фрагментации позволяет сделать некоторые вы-во-ды об особенностях строения и воссоздать структуру исследуемого соеди-нения.
  • Метод ядерного магнитного резонанса (ЯМР) основан на взаимодействии ядер, обладающих собственным магнитным моментом (спином) и помещенных во внешнее постоянное магнитное поле (переориентация спина), с переменным электромагнитным излучением радиочастотного диапазона. ЯМР представляет собой один из самых главных и информативных методов определения химической структуры. Метод используют также для изучения пространственного строения и динамики молекул. В зависимости от ядер, взаимодействующих с излучением различают, например, метод протонного резонанса ПМР, ЯМР 1 Н), позволяющий определять положение атомов водорода в молекуле. Метод ЯМР 19 F позволяет определять наличие и положение атомов фтора. Метод ЯМР 31 Р дает информацию о наличии, валентном состоянии и положении атомов фосфора в молекуле. Метод ЯМР 13 С позволяет определять число и типы углеродных атомов, он используется для изучения углеродного скелета молекулы. В отличие от первых трёх в последнем методе используется неосновной изотоп элемента, поскольку ядро основного изотопа 12 С имеет нулевой спин и не может наблюдаться методом ЯМР.
  • Метод ультрафиолетовой спектроскопии (УФ спектроскопия) или спектроскопия электронных переходов. Метод основан на поглощении электро-магнитного излучения ультрафиолетовой и видимой области спектра при переходе электронов в молекуле с верхних заполненных энергетических уровней на вакант-ные (возбуждение молекулы). Чаще всего используется для определения наличия и характеристики сопряженных π-систем.
  • Методы аналитической химии позволяют определять наличие некоторых функциональных групп по специфическим химическим (качественным) реакциям, факт протекания которых можно фиксировать визуально (например, появление или изменение окраски) или с помощью других методов. Помимо химических методов анализа в органической химии все большее применение находят инструментальные аналитические методы, такие как хроматография (тонкослойная, газовая, жид-костная). Почетное место среди них занимает хроматомасс-спектромерия, позво-ляющая не только оценить степень чистоты полученных соединений, но и полу-чить масс-спектральную информацию о компонентах сложных смесей.
  • Методы исследования стереохимии органических соединений . С начала 80 г.г. стала очевидной целесообразность разработки нового направления в фармакологии и фармации, связанного с созданием энантиомерно чистых лекарственных средств с оптимальным соотношением терапевтической эффективности и безопасности. В настоящее время примерно 15% всех синтезируемых фармпрепаратов представ-лены чистыми энантиомерами. Отражением данной тенденции стало появление в научной литературе последних лет термина chiral switch , что в русском переводе означает ”переключение на хиральные молекулы”. В связи с этим особое значение в органической химии приобретают методы установления абсолютной конфи-гурации хиральных органических молекул и определения их оптической чистоты. Основным методом определения абсолютной конфигурации следует считать рентгеноструктурный анализ (РСА), а оптической чистоты - хроматографию на колонках с неподвижной хиральной фазой и метод ЯМР с использованием специальных дополнительных хиральных реагентов.

Связь органической химии с химической промышленностью

Основной метод органической химии - синтез - тесно связывает органическую химию с химической промышленностью. На основе методов и разработок синтетической органической химии возник малотоннажный (тонкий) органический синтез, включающий производство лекарств, витаминов, ферментов , феромонов, жидких кристаллов, орга-нических полупроводников, солнечных батарей и др. Развитие крупнотоннажного (основ-ного) органического синтеза также базируется на достижениях органической химии. К основному органическому синтезу относится производство искусственных волокон, пластмасс, переработка нефти, газа и каменноугольного сырья.

Рекомендуемая литература

  • Г.В. Быков, История органической химии , М.: Мир, 1976 (http://gen.lib/rus.ec/get?md5=29a9a3f2bdc78b44ad0bad2d9ab87b87)
  • Дж. Марч, Органическая химия: реакции, механизмы и структура , в 4 томах, М.: Мир, 1987
  • Ф. Кери, Р. Сандберг, Углубленный курс органической химии , в 2 томах, М.: Химия, 1981
  • О.А. Реутов, А.Л. Курц, К.П. Бутин, Органическая химия , в 4 частях, М.: « Бином, Лаборатория знаний», 1999-2004. (http://edu.prometey.org./library/autor/7883.html)
  • Химическая энциклопедия , под ред. Кнунянца, М.: «Большая Российская энциклопедия», 1992.

Алканы (предельные углеводороды, парафины) – ациклические насыщенные углеводороды общей формулы С n H 2n+2 . В соответствии с общей формулой алканы образуют гомологический ряд.

Первые четыре представителя имеют полусистематические названия – метан (CH 4), этан (С 2 Н 6), пропан (С 3 Н 8), бутан (С 4 Н 10). Названия последующих членов ряда строятся из корня (греческие числительные) и суффикса -ан : пентан (С 5 Н 12), гексан (С 6 Н 14), гептан (С 7 Н 16) и т. д.

Атомы углерода в алканах находятся в sp 3 -гибридном состоянии. Оси четырех sp 3 - орбиталей направлены к вершинам тетраэдра, валентные углы равны 109°28 .

Пространственное строение метана:

Энергия С-С связи Е с - с = 351 кДж/моль, длина С-С связи 0,154 нм.

Связь С-С в алканах является ковалентной неполярной. Связь С-Н – ковалентная слабополярная.

Для алканов, начиная с бутана, существуют структурные изомеры (изомеры строения), различающиеся порядком связывания между атомами углерода, с одинаковым качественным и количественным составом и молекулярной массой, но различающихся по физическим свойствам.


Способы получения алканов

1. С n H 2n+2 >400–700 °C > С p H 2p+2 + С m H 2m ,

Крекинг нефти (промышленный способ). Алканы также выделяют из природных источников (природный и попутный газы, нефть, каменный уголь).

(гидрирование непредельных соединений)

3. nCO + (2n + 1)Н 2 > С n H 2n+2 + nH 2 O (получение из синтез-газа (CO + Н 2))

4. (реакция Вюрца)

5. (реакция Дюма) CH 3 COONa + NaOH >t > CH 4 + Na 2 CO 3

6. (реакция Кольбе)

Химические свойства алканов

Алканы не способны к реакциям присоединения, т. к. в их молекулах все связи насыщены, для них характерны реакции радикального замещения, термического разложения, окисления, изомеризации.


1. (реакционная способность убывает в ряду: F 2 > Cl 2 > Br 2 > (I 2 не идет), R 3 C > R 2 CH > RCH 2 > RCH 3 )


2. (реакция Коновалова)

3. C n H 2n+2 + SO 2 + ?O 2 >h? > C n H 2n+1 SO 3 H – алкилсульфокислота

(сульфоокисление, условия реакции: облучение УФ)

4. CH 4 >1000 °C > С + 2Н 2 ; 2CH 4 >t>1500 °C > С 2 Н 2 + ЗН 2 (разложение метана – пиролиз)

5. CH 4 + 2Н 2 O >Ni, 1300 °C > CO 2 + 4Н 2 (конверсия метана)

6. 2С n H 2n+2 + (Зn+1)O 2 > 2nCO 2 + (2n+2)Н 2 O (горение алканов)

7. 2н- С 4 Н 10 + 5O 2 > 4CH 3 COOH + 2Н 2 O (окисление алканов в промышленности; получение уксусной кислоты)

8. н- С 4 Н 10 > изо- С 4 Н 10 (изомеризация, катализатор AlCl 3)

2. Циклоалканы

Циклоалканы (циклопарафины, нафтены, цикланы, полиметилены) – предельные углеводороды с замкнутой (циклической) углеродной цепью. Общая формула С n H 2n .

Атомы углерода в циклоалканах, как и в алканах, находятся в sp 3 -гибридизованном состоянии. Гомологический ряд циклоалканов начинает простейший циклоалкан – циклопропан С 3 Н 6 , представляющий собой плоский трехчленный карбоцикл. По правилам международной номенклатуры в циклоалканах главной считается цепь углеродных атомов, образующих цикл. Название строится по названию этой замкнутой цепи с добавлением приставки «цикло» (циклопропан, циклобутан, циклопентан, циклогексан и т. д.).


Структурная изомерия циклоалканов связана с различной величиной цикла (структуры 1 и 2), строением и видом заместителей (структуры 5 и 6) и их взаимным расположением (структуры 3 и 4).


Способы получения циклоалканов

1. Получение из дигалогенопроизводных углеводородов

2. Получение из ароматичесих углеводородов

Химические свойства циклоалканов

Химические свойства циклоалканов зависят от размера цикла, определяющего его устойчивость. Трех– и четырехчленные циклы (малые циклы), являясь насыщенными, резко отличаются от всех остальных предельных углеводородов. Циклопропан, циклобутан вступают в реакции присоединения. Для циклоалканов (С 5 и выше) вследствие их устойчивости характерны реакции, в которых сохраняется циклическая структура, т. е. реакции замещения.

1. Действие галогенов

2. Действие галогеноводородов

С циклоалканами, содержащими пять и более атомов углерода в цикле, галогеново-дороды не взаимодействуют.


4. Дегидрирование

Алкены (непредельные углеводороды, этиленовые углеводороды, олефины) – непредельные алифатические углеводороды, молекулы которых содержат двойную связь. Общая формула ряда алкенов С n Н 2n .

По систематической номенклатуре названия алкенов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса – ан на – ен : этан (CH 3 -CH 3) – этен (CH 2 =CH 2) и т. д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя двойную связь. Нумерацию углеродных атомов начинают с ближнего к двойной связи конца цепи.

В молекуле алкена ненасыщенные атомы углерода находятся в sp 2 -гибридизации, а двойная связь между ними образована?– и?-связью. sp 2 -Гибридные орбитали направлены друг к другу под углом 120°, и одна негибридизованная -орбиталь, расположена под углом 90° к плоскости гибридных атомных орбиталей.

Пространственное строение этилена:


Длина связи С=С 0,134 нм, энергия связи С=С Е с=с = 611 кДж/моль, энергия?-связи Е? = 260 кДж/моль.

Виды изомерии: а) изомерия цепи; б) изомерия положения двойной связи; в) Z, Е (cis, trans ) – изомерия, вид пространственной изомерии.

Способы получения алкенов

1. CH 3 -CH 3 >Ni, t > CH 2 =CH 2 + H 2 (дегидрирование алканов)

2. С 2 Н 5 OH >H,SO 4 , 170 °C> CH 2 =CH 2 + Н 2 O (дегидратация спиртов)

3. (дегидрогалогенирование алкилгалогенидов по правилу Зайцева)


4. CH 2 Cl-CH 2 Cl + Zn > ZnCl 2 + CH 2 =CH 2 (дегалогенирование дигалогенопроизводных)

5. HC?CH + Н 2 >Ni, t > CH 2 =CH 2 (восстановление алкинов)

Химические свойства алкенов

Для алкенов наиболее характерны реакции присоединения, они легко окисляются и полимеризуются.

1. CH 2 =CH 2 + Br 2 > CH 2 Br-CH 2 Br

(присоединение галогенов, качественная реакция)

2. (присоединение галогеноводородов по правилу Марковникова)

3. CH 2 =CH 2 + Н 2 >Ni, t > CH 3 -CH 3 (гидрирование)

4. CH 2 =CH 2 + Н 2 O >H + > CH 3 CH 2 OH (гидратация)

5. ЗCH 2 =CH 2 + 2КMnO 4 + 4Н 2 O > ЗCH 2 OH-CH 2 OH + 2MnO 2 v + 2KOH (мягкое окисление, качественная реакция)

6. CH 2 =CH-CH 2 -CH 3 + КMnO 4 >H + > CO 2 + С 2 Н 5 COOH (жесткое окисление)

7. CH 2 =CH-CH 2 -CH 3 + O 3 > Н 2 С=O + CH 3 CH 2 CH=O формальдегид+пропаналь > (озонолиз)

8. С 2 Н 4 + 3O 2 > 2CO 2 + 2Н 2 O (реакция горения)

9. (полимеризация)

10. CH 3 -CH=CH 2 + HBr >перекись > CH 3 -CH 2 -CH 2 Br (присоединение бро-моводорода против правила Марковникова)

11. (реакция замещения в?-положение)

Алкины (ацетиленовые углеводороды) – ненасыщенные углеводороды, имеющие в своем составе тройную С?С связь. Общая формула алкинов с одной тройной связью С n Н 2n-2 . Простейший представитель ряда алкинов CH?CH имеет тривиальное название ацетилен. По систематической номенклатуре названия ацетиленовых углеводородов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на -ин : этан (CH 3 -CH 3) – этин (CH?CH) и т. д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя тройную связь. Нумерацию углеродных атомов начинают с ближнего к тройной связи конца цепи.

В образовании тройной связи участвуют атомы углерода в sp -гибридизованном состоянии. Каждый из них имеет по две sp- гибридных орбитали, направленных друг к другу под углом 180°, и две негибридных p -орбитали, расположенных под углом 90° по отношению друг к другу и к sp -гибридным орбиталям.

Пространственное строение ацетилена:


Виды изомерии: 1) изомерия положения тройной связи; 2) изомерия углеродного скелета; 3) межклассовая изомерия с алкадиенами и циклоалкенами.

Способы получения алкинов

1. СаО + ЗС >t > СаС 2 + CO;

СаС 2 + 2Н 2 O > Са(OH) 2 + CH?CH (получение ацетилена)

2. 2CH 4 >t>1500 °C > HC = CH + ЗН 2 (крекинг углеводородов)

3. CH 3 -CHCl 2 + 2KOH >в спирте > HC?CH + 2KCl + Н 2 O (дегалогенирова-ние)

CH 2 Cl-CH 2 Cl + 2KOH >в спирте > HC?CH + 2KCl + Н 2 O

Химические свойства алкинов

Для алкинов характерны реакции присоединения, замещения. Алкины полиме-ризуются, изомеризуются, вступают в реакции конденсации.

1. (гидрирование)

2. HC?CH + Br 2 > CHBr=CHBr;

CHBr=CHBr + Br 2 > CHBr 2 -CHBr 2 (присоединение галогенов, качественная реакция)

3. CH 3 -С?CH + HBr > CH 3 -CBr=CH 2 ;

CH 3 -CBr=CH 2 + HBr > CH 3 -CBr 2 -CHg (присоединение галогеноводородов по правилу Марковникова)

4. (гидратация алинов, реация Кучерова)



5.(присоединение спиртов)

6.(присоединение карбоновых ислот)

7. CH?CH + 2Ag 2 O >NH 3 > AgC?CAgv + H 2 O (образование ацетиленидов, качественная реакция на концевую тройную связь)

8. CH?CH + [О] >КMnO 4 > HOOC-COOH > HCOOH + CO 2 (окисление)

9. CH?CH + CH?CH > CH 2 =CH-С?CH (катализатор – CuCl и NH 4 Cl, димеризация)

10. 3HC?CH >C, 600 °C > С 6 Н 6 (бензол) (циклоолигомеризация, реакция Зелинского)

5. Диеновые углеводороды

Алкадиены (диены) – непредельные углеводороды, молекулы которых содержат две двойные связи. Общая формула алкадиенов С n Н 2n _ 2 . Свойства алкадиенов в значительной степени зависят от взаимного расположения двойных связей в их молекулах.

Способы получения диенов

1. (метод СВ. Лебедева)


2. (дегидратация)


3. (дегидрирование)


Химические свойства диенов

Для сопряженных диенов характерны реакции присоединения. Сопряженные диены способны присоединять не только по двойным связям (к C 1 и С 2 , С 3 и С 4), но и к концевым (С 1 и С 4) атомам углерода с образованием двойной связи между С 2 и С 3 .



6. Ароматические углеводороды

Арены, или ароматические углеводороды, – циклические соединения, молекулы которых содержат устойчивые циклические группы атомов с замкнутой системой сопряженных связей, объединяемые понятием ароматичности, которая обуславливает общие признаки в строении и химических свойствах.

Все связи С-С в бензоле равноценны, их длина равна 0,140 нм. Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф. Кекуле), а все они выровнены (дел окал изованы).

формула Кекуле

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R): С 6 Н 5 -R, R-С 6 Н 4 -R. Общая формула гомологического ряда бензола С n Н 2n _ 6 (n > 6). Для названия ароматических углеводородов широко используются тривиальные названия (толуол, ксилол, кумол и т. п.). Систематические названия строят из названия углеводородного радикала (приставка) и слова «бензол» (корень): С 6 Н 5 -CH 3 (метилбензол), С 6 Н 5 -С 2 Н 5 (этилбензол). Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Для дизамещен-ных бензолов R-С 6 Н 4 -R используется также и другой способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками: орто– (o -) – заместители соседних атомов углерода кольца (1,2-); мета– (м -) – заместители через один атом углерода (1,3-); пара– (п -) – заместители на противоположных сторонах кольца (1,4-).


Виды изомерии (структурная): 1) положения заместителей для ди-, три– и тетра-замещенных бензолов (например, о-, м- и п -ксилолы); 2) углеродного скелета в боковой цепи, содержащей не менее 3 атомов углерода; 3) заместителей (R), начиная с R=С 2 Н 5 .

Способы получения ароматических углеводородов

1. С 6 Н 12 >Pt, 300 °C > С 6 Н 6 + ЗН 2 (дегидрирование циклоалканов)

2. н- С 6 Н 14 >Cr 2 O 3 , 300 °C > С 6 Н 6 + 4Н 2 (дегидроциклизация алканов)

3. ЗС 2 Н 2 >С, 600 °C > С 6 Н 6 (циклотримеризация ацетилена, реакция Зелинского)

Химические свойства ароматических углеводородов

По химическим свойствам арены отличаются от предельных и непредельных углеводородов. Для аренов наиболее характерны реакции, идущие с сохранением ароматической системы, а именно реакции замещения атомов водорода, связанных с циклом. Другие реакции (присоединение, окисление), в которых участвуют делокали-зованные С-С связи бензольного кольца и нарушается его ароматичность, идут с трудом.

1. C 6 H 6 + Cl 2 >AlCl 3 > C 6 H 5 Cl + HCl (галогенирование)

2. C 6 H 6 + HNO 3 >H 2 SO 4 > C 6 H 5 -NO 2 + H 2 O (нитрование)


3. С 6 Н 6 >H 2 SO 4 > С 6 Н 5 -SO 3 H + H 2 O (сульфирование)

4. С 6 Н 6 + RCl >AlCl 3 > С 6 Н 5 -R + HCl (алкилирование)

5. (ацилирование)


6. С 6 Н 6 + ЗН 2 >t, Ni > С 6 Н 12 циклогексан (присоединение водорода)

7. (1,2,3,4,5,6-гексахлороциклогексан, присоединение хлора)

8. С 6 Н 5 -CH 3 + [О] > С 6 Н 5 -COOH кипячение с раствором КMnO 4 (окисление алкилбензолов)

7. Галогеноуглеводороды

Галогеноуглеводородами называются производные углеводородов, в которых один или несколько атомов водорода заменены на атомы галогена.

Способы получения галогеноуглеводородов

1. CH 2 =CH 2 + HBr > CH 3 -CH 2 Br (гидрогалогенирование ненасыщенных углеводородов)

CH?CH + HCl > CH 2 =CHCl

2. CH 3 CH 2 OH + РCl 5 > CH 3 CH 2 Cl + POCl 3 + HCl (получение из спиртов)

CH 3 CH 2 OH + HCl > CH 3 CH 2 Cl + Н 2 O (в присутствии ZnCl 2 , t°C )

3. а) CH 4 + Cl 2 >hv> CH 3 Cl + HCl (галогенирование углеводородов)


Химические свойства галогеноуглево-дородов

Наибольшее значение для соединений этого класса имеют реакции замещения и отщепления.

1. CH 3 CH 2 Br + NaOH (водн. р-р) > CH 3 CH 2 OH + NaBr (образование спиртов)

2. CH 3 CH 2 Br + NaCN > CH 3 CH 2 CN + NaBr (образование нитрилов)

3. CH 3 CH 2 Br + NH 3 > + Br --HBr - CH 3 CH 2 NH 2 (образование аминов)

4. CH 3 CH 2 Br + NaNO 2 > CH 3 CH 2 NO 2 + NaBr (образование нитросоединений)

5. CH 3 Br + 2Na + CH 3 Br > CH 3 -CH 3 + 2NaBr (реакция Вюрца)

6. CH 3 Br + Mg > CH 3 MgBr (образование магнийорганических соединений, реактив Гриньяра)

7. (дегидрогалогенирование)


Спиртами называются производные углеводородов, в молекулах которых содержится одна или несколько гидроксильных групп (-OH), связанных с насыщенными атомами углерода. Группа -OH (гидроксильная, оксигруппа) является в молекуле спирта функциональной группой. Систематические названия даются по названию углеводорода с добавлением суффикса -ол и цифры, указывающей положение гидроксигруппы. Нумерация ведется от ближайшего к OH-группе конца цепи.

По числу гидроксильных групп спирты подразделяются на одноатомные (одна группа -OH), многоатомные (две и более групп -OH). Одноатомные спирты: метанол CH 3 OH, этанол С 2 Н 5 OH; двухатомный спирт: этилен-гликоль (этандиол-1,2) HO-CH 2 -CH 2 -OH; трехатомный спирт: глицерин (пропантриол-1,2,3) HO-CH 2 -CH(OH)-CH 2 -OH. В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты первичные R-CH 2 -OH, вторичные R 2 CH-OH, третичные R 3 C-OH.

По строению радикалов, связанных с атомом кислорода, спирты подразделяются на предельные, или алканолы (CH 3 CH 2 -OH), непредельные, или алкенолы (CH 2 =CH-CH 2 -OH), ароматические (С 6 Н 5 CH 2 -OH).

Виды изомерии (структурная изомерия): 1) изомерия положения OH-группы (начиная с С 3); 2) углеродного скелета (начиная с С 4); 3) межклассовая изомерия с простыми эфирами (например, этиловый спирт CH 3 CH 2 OH и диметиловый эфир CH 3 -О-CH 3). Следствием полярности связи О-Н и наличия неподеленных пар электронов на атоме кислорода является способность спиртов к образованию водородных связей.

Способы получения спиртов

1. CH 2 =CH 2 + Н 2 O/Н + > CH 3 -CH 2 OH (гидратация алкенов)

2. CH 3 -CHO + Н 2 >t, Ni > С 2 Н 5 OH (восстановление альдегидов и кетонов)

3. C 2 H 5 Br + NaOH (водн.) > С 2 Н 5 OH + NaBr (гидролиз галогенопроизводных)

ClCH 2 -CH 2 Cl + 2NaOH (водн.) > HOCH 2 -CH 2 OH + 2NaCl

4. CO + 2Н 2 >ZnO, CuO, 250 °C, 7 МПа > CH 3 OH (получение метанола, промышленность)

5. С 6 Н 12 O 6 >дрожжи > 2С 2 Н 5 OH + 2CO 2 (брожение моноз)

6. 3CH 2 =CH 2 + 2KMnO 4 + 4Н 2 O > 3CH 2 OH-CH 2 OH - этиленгиликоль + 2KOH + 2MnO 2 (окисление в мягких условиях)

7. а) CH 2 =CH-CH 3 + O 2 > CH 2 =CH-CHO + Н 2 O

б) CH 2 =CH-CHO + Н 2 > CH 2 =CH-CH 2 OH

в) CH 2 =CH-CH 2 OH + Н 2 O 2 > HOCH 2 -CH(OH)-CH 2 OH (получение глицерина)

Химические свойства спиртов

Химические свойства спиртов связаны с наличием в их молекулу группы -OH. Для спиртов характерны два типа реакций: разрыв связи С-О и связи О-Н.

1. 2С 2 Н 5 OH + 2Na > Н 2 + 2C 2 H 5 ONa (образование алкоголятов металлов Na, К, Mg, Al)

2. а) С 2 Н 5 OH + NaOH ? (в водном растворе не идет)

б) CH 2 OH-CH 2 OH + 2NaOH > NaOCH 2 -CH 2 ONa + 2Н 2 O

в) (качественная реакция на многоатомные спирты – образование ярко-синего раствора с гидроксидом меди)


3. а) (образование сложных эфиров)

б) С 2 Н 5 OH + H 2 SO 4 > С 2 Н 5 -О-SO 3 H + Н 2 O (на холоду)


4. а) С 2 Н 5 OH + HBr > С 2 Н 5 Br + Н 2 O

б) С 2 Н 5 OH + РCl 5 > С 2 Н 5 Cl + POCl 3 + HCl

в) С 2 Н 5 OH + SOCl 2 > С 2 Н 5 Cl + SO 2 + HCl (замещение гидроксильной группы на галоген)

5. С 2 Н 5 OH + HOC 2 H 5 >H 2 SO 4 , <140 °C > C 2 H 5 -O-C 2 H 5 + H 2 O (межмолекулярная гидротация)

6. С 2 Н 5 OH >H 2 SO 4 , 170 °C > CH 2 =CH 2 + H 2 O (внутримолекулярная гидротация)

7. а) (дегидрирование, окисление первичных спиртов)


Фенолами называются производные аренов, в которых один или несколько атомов водорода ароматического кольца замещены на гидроксильные группы. По числу гидроксильных групп в ароматическом кольце различают одно– и многоатомные (двух– и трехатомные) фенолы. Для большинства фенолов используются тривиальные названия. Структурная изомерия фенолов связана с различным положением гидроксильных групп.


Способы получения фенолов

1. С 6 Н 5 Cl + NaOH(p, 340°C) > С 6 Н 5 OH + NaCl (щелочной гидролиз галогеноуглеводородов)

2. (кумольный способ получения)


3. C 6 H 5 SO 3 Na + NaOH (300–350°C) > С 6 Н 5 OH + Na 2 SO 3 (щелочное плавление солей ароматических сульфоновых кислот)

Химические свойства фенолов

Фенолы в большинстве реакций по связи О-Н активнее спиртов, поскольку эта связь более полярна за счет смещения электронной плотности от атома кислорода в сторону бензольного кольца (участие непо-деленной электронной пары атома кислорода в системе л-сопряжения). Кислотность фенолов значительно выше, чем спиртов.

Для фенолов реакции разрыва связи С-О не характерны. Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы, но и в большей реакционной способности бензольного ядра.

Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно в орто– и пара- положениях (+М-эффект OH-группы). Для обнаружения фенолов используется качественная реакция с хлоридом железа(III). Одноатомные фенолы дают устойчивое сине-фиолетовое окрашивание, что связано с образованием комплексных соединений железа.

1. 2С 6 Н 5 OH + 2Na > 2C 6 H 5 ONa + Н 2 (так же, как и этанол)

2. С 6 Н 5 OH + NaOH > C 6 H 5 ONa + H 2 O (в отличие от этанола)

C 6 H 5 ONa + Н 2 O + CO 2 > С 6 Н 5 OH + NaHCO 3 (фенол более слабая кислота, чем угольная)


Фенолы не образуют сложные эфиры в реакциях с кислотами. Для этого используются более реакционноспособные производные кислот (ангидриды, хлорангидриды).

4. С 6 Н 5 OH + CH 3 CH 2 OH >NaOH > С 6 Н 5 OCH 2 CH 3 + NaBr (О-алкилирование)

(взаимодействие с бромной водой, качественная реакция)

6.(нитрование разб. HNO 3 , при нитрировании конц. HNO 3 образуется 2,4,6-тринитрофенол)


7. n C 6 H 5 OH + n CH 2 O > n H 2 O + (-C 6 H 3 OH-CH 2 -) n (поликонденсация, получение фенолформальдегидных смол)

10. Альдегиды и кетоны

Альдегидами называются соединения, в которых карбонильная группа

соединена с углеводородным радикалом и атомом водорода, а кетонами – карбонильные соединения с двумя углеводородными радикалами.

Систематические названия альдегидов строят по названию соответствующего углеводорода с добавлением суффикса –аль . Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении: Н 2 С=O – метаналь (муравьиный альдегид, формальдегид); CH 3 CH=O – этаналь (уксусный альдегид). Систематические названия кетонов несложного строения производят от названий радикалов с добавлением слова «кетон». В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса –он ; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе. Примеры: CH 3 -CO-CH 3 – диметилкетон (пропанон, ацетон). Для альдегидов и кетонов характерна структурная изомерия. Изомерия альдегидов: а) изомерия углеродного скелета, начиная с С 4 ; б) межклассовая изомерия. Изомерия кетонов: а) углеродного скелета (с С 5); б) положения карбонильной группы (с С 5); в) межклассовая изомерия.

Атомы углерода и кислорода в карбонильной группе находятся в состоянии sp 2 - гибридизации. Связь С=O сильно полярна. Электроны кратной связи С=O смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда, а карбонильный атом углерода приобретает частичный положительный заряд.

Способы получения альдегидов и кетонов

1. а) (дегидрирование, окисление первичных спиртов)

б) (дегидрирование, окисление вторичных спиртов)



2. а) CH 3 CH 2 CHCl 2 + 2NaOH >в воде > CH 3 CH 2 CHO + 2NaCl + H 2 O (гидролиз дигалогенопроизводных)

б) CH 3 СCl 2 CH 3 + 2NaOH >в воде > CH 3 COCH 3 + 2NaCl + H 2 O

3. (гидратация алкинов, реакция Кучерова)



4. (окисление этилена до этаналя)

(окисление метана до формальдегида)

CH 4 + O 2 >400–600 °C, NO > H 2 C=O + H 2 O

Химические свойства альдегидов и ке-тонов

Для карбонильных соединений характерны реакции различных типов: а) присоединение по карбонильной группе; б) восстановление и окисление; в) конденсация; д) полимеризация.

1. (присоединение циановодородной кислоты, образование гидроксинитрилов)

2. (присоединение гидросулбфита натрия)

3. (восстановление)


4. (образование полуацеталец и ацеталей)


5. (взаимодействие с гидроксоламином, образование оксима ацетальдегида)

6. (образование дигалогенопроизводных)


7. (?-галогенирование в присутствии OH?)

8. (албдольная конденсация)


9. R-CH=O + Ag 2 O >NH 3 > R-COOH + 2Agv (окисление, реакция «серебряного зеркала»)

R-CH=O + 2Cu(OH) 2 > R-COOH + Cu 2 Ov, + 2H 2 O (красный осадок, окисление)

10. (окисление кетонов, жесткие условия)


11. n CH 2 =O > (-CH2-O-) n параформ n = 8-12 (полимеризация)

11. Карбоновые кислоты и их производные

Карбоновыми кислотами называются органические соединения, содержащие одну или несколько карбоксильных групп -COOH, связанных с углеводородным радикалом. По числу карбоксильных групп кислоты подразделяются на: одноосновные (монокарбоновые) CH 3 COOH (уксусная), многоосновные (дикарбоновые, трикарбоновые и т. д.). По характеру углеводородного радикала различают кислоты: предельные (например, CH 3 CH 2 CH 2 COOH); непредельные (CH 2 =CH(-COOH); ароматические (С 6 Н 5 COOH).

Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса –овая и слова «кислота»: HCOOH – метановая (муравьиная) кислота, CH 3 COOH – этановая (уксусная) кислота. Для карбоновых кислот характерная структурная изомерия: а) изомерия скелета в углеводородном радикале (начиная с С 4); б) межклассовая изомерия, начиная с С 2 . Возможна цис-транс-изомерия в случае непредельных карбоновых кислот. Электронная плотность?- связи в карбонильной группе смещена в сторону атома кислорода. Вследствие этого у карбонильного углерода создается недостаток электронной плотности, и он притягивает к себе неподеленные пары атома кислорода гидроксильной группы, в результате чего электронная плотность связи О-Н смещается в сторону атома кислорода, водород становится подвижным и приобретает способность отщепляться в виде протона.

В водном растворе карбоновые кислоты диссоциируют на ионы:

R-COOH - R-COО? + Н +

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей.

Способы получения карбоновых кислот

1. CH 3 -СCl 3 + 3NaOH > CH 3 -COOH + 3NaCl + Н 2 O (гидролиз тригалогенопроизводных)

2. R-CHO + [О] > R-COOH (окисление альдегидов и кетонов)

3. CH 3 -CH=CH 2 + CO + Н 2 O/Н + >Ni, р, t > CH 3 -CH 2 -CH 2 -COOH (оксосинтез)

4. CH 3 C?N + 2Н 2 O/ Н + > CH 3 COOH + NH 4 (гидролиз нитрилов)

5. CO + NaOH > HCOONa; 2HCOONa + H 2 SO 4 > 2HCOOH + Na 2 SO 4 (получение HCOOH)

Химические свойства карбоновых кислот и их производных

Карбоновые кислоты проявляют высокую реакционную способность и вступают в реакции с различными веществами, образуя разнообразные соединения, среди которых большое значение имеют функциональные производные: сложные эфиры, амиды, нитрилы, соли, ангидриды, гало-генангидриды.

1. а) 2CH 3 COOH + Fe > (CH 3 COO) 2 Fe + Н 2 (образование солей)

б) 2CH 3 COOH + MgO > (CH 3 COO) 2 Mg + Н 2 O

в) CH 3 COOH + KOH > CH 3 COОК + Н 2 O

г) CH 3 COOH + NaHCO 3 > CH 3 COONa + CO 2 + Н 2 O

CH 3 COONa + H 2 O - CH 3 COOH + NaOH (соли карбоновых кислот гидролизуются)

2. (образование вложных эфиров)

(омыление вложного эфира)

3. (получение хлорангидридов кислот)


4. (разложение водой)

5. CH 3 -COOH + Cl 2 >hv > Cl-CH 2 -COOH + HCl (галогенирование в?-положение)

6. HO-CH=O + Ag 2 O >NH 3 > 2Ag + Н 2 CO 3 (Н 2 O + CO 2) (особенности HCOOH)

HCOOH >t > CO + Н 2 O

Жиры – сложные эфиры глицерина и высших одноатомных карбоновых кислот. Общее название таких соединений – триглицериды. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой С 15 Н 31 COOH, стеариновой С 17 Н 35 COOH) и ненасыщенных (олеиновой С 17 Н 33 COOH, линолевой С 17 Н 31 COOH). Жиры состоят главным образом из триглицеридов предельных кислот. Растительные жиры – масла (подсолнечное, соевое) – жидкости. В состав триглицеридов масел входят остатки непредельных кислот.

Жирам как сложным эфирам свойственна обратимая реакция гидролиза, катализируемая минеральными кислотами. При участии щелочей гидролиз жиров происходит необратимо. Продуктами в этом случае являются мыла – соли высших карбоновых кислот и щелочных металлов. Натриевые соли – твердые мыла, калиевые – жидкие. Реакция щелочного гидролиза жиров называется также омылением.


Амины – органические производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы. В зависимости от числа углеводородных радикалов различают первичные RNH 2 , вторичные R 2 NH, третичные R 3 N амины. По характеру углеводородного радикала амины подразделяются на алифатические (жирные), ароматические и смешанные (или жирноароматические). Названия аминов в большинстве случаев образуют из названий углеводородных радикалов и суффикса –амин. Например, CH 3 NH 2 – метиламин; CH 3 -CH 2 -NH 2 – этиламин. Если амин содержит различные радикалы, то их перечисляют в алфавитном порядке: CH 3 -CH 2 -NH-CH 3 – ме-тилэтиламин.

Изомерия аминов определяется количеством и строением радикалов, а также положением аминогруппы. Связь N-Н является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи. Третичные амины не образуют ассоциирующих водородных связей. Амины способны к образованию водородных связей с водой. Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается.

Способы получения аминов

1. R-NO 2 + 6[Н] > R-NH 2 + 2H 2 O (восстановление нитросоединений)

2. NH 3 + CH 3 I > I? >NH 3 > CH 3 NH 2 + NH 4 I (алкилирование аммиака)

3. а) С 6 Н 5 -NO 2 + 3(NH 4) 2 S > С 6 Н 5 -NH 2 + 3S + 6NH 3 + 2H 2 O (реакция Зинина)

б) С 6 Н 5 -NO 2 + 3Fe + 6HCl > С 6 Н 5 -NH 2 + 3FeCl 2 + 2Н 2 O (восстановление нитросоединений)

в) С 6 Н 5 -NO 2 + ЗН 2 >катализатор, t > C 6 H 5 -NH 2 + 2Н 2 O

4. R-C?N + 4[H] > RCH 2 NH 2 (восстановление нитрилов)

5. ROH + NH 3 >Al 2 O 3 ,350 °C > RNH 2 + 2H 2 O (получение низших алкиламинов С 2 -С 4)

Химические свойства аминов

Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства. Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов. Для аминов характерны ярко выраженные основные свойства. Водные растворы алифатических аминов проявляют щелочную реакцию. Алифатические амины – более сильные основания, чем аммиак. Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку не-поделенная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с его?-электронами.

На основность аминов влияют различные факторы: электронные эффекты углеводородных радикалов, пространственное экранирование радикалами атома азота, а также способность образующихся ионов к стабилизации за счет сольватации в среде растворителя. В результате донорного эффекта алкильных групп основность алифатических аминов в газовой фазе (без растворителя) растет в ряду: первичные < вторичные < третичные. Основность ароматических аминов зависит также от характера заместителей в бензольном кольце. Электроноакцепторные заместители (-F, -Cl, -NO 2 и т. п.) уменьшают основные свойства ариламина по сравнению с анилином, а электронодонорные (алкил R-, -OCH 3 , -N(CH 3) 2 и др.), напротив, увеличивают.

1. CH 3 -NH 2 + Н 2 O > OH (взаимодействие с водой)

2. (CH 3) 2 NH + HCl > [(CH 3) 2 NH 2 ]Cl хлорид диметиламмония (взаимодействие с кислотами)

[(CH 3) 2 NH 2 ]Cl + NaOH > (CH 3) 2 NH + NaCl + H 2 O (взаимодействие солей аминов со щелочами)

(ацителирование, с третичными аминами не идет)

4. R-NH 2 + CH 3 I > I? >NH 3 > CH 3 NHR + NH 4 I (алкилирование)

5. Взаимодействие с азотистой кислотой: строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различия первичных, вторичных и третичных аминов.

а) R-NH 2 + HNO 2 > R-OH + N 2 + H 2 O (первичные жирные амины)

б) С 6 Н 5 -NH 2 + NaNO 2 + HCl > [С 6 Н 5 -N?N] + Cl? – соль диазония (первичные ароматические амины)

в) R 2 NH + Н-О-N=O > R 2 N-N=O (N-нитрозамин) + Н 2 O (вторичные жирные и ароматические амины)

г) R 3 N + Н-О-N=O > при низкой температуре нет реакции (третичные жирные амины)


(третичные ароматические амины)

Свойства анилина. Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу. Бензольное кольцо ослабляет основные свойства аминогруппы по сравнению с алифатическими аминами и аммиаком, но под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения по сравнению с бензолом.

C 6 H 5 -NH 2 + HCl > Cl = C 6 H 5 NH 2 HCl

C 6 H 5 NH 2 HCl + NaOH > C 6 H 5 NH 2 + NaCl + H 2 O

C 6 H 5 NH 2 + CH3I >t > + I?


14. Аминокислоты

Аминокислотами называются гетеро-функциональные соединения, молекулы которых содержат одновременно аминогруппу и карбоксильную группу. В зависимости от взаимного расположения амино– и карбоксильной групп аминокислоты подразделяют на?-, ?-, ?– и т. д. По ИЮПАК, для наименования аминокислот группу NH 2 - называют приставкой амино-, указывая цифрой номер углеродного атома, с которым она связана, а затем следует название соответствующей кислоты.

2-аминопропановая кислота (?-аминопропановая, ?-аланин) 3-аминопропановая кислота (?-аминопропановая, ?-аланин) 6-аминогексановая кислота (?-аминокапроновая)

По характеру углеводородного радикала различают алифатические (жирные) и ароматические аминокислоты. Изомерия аминокислот зависит от строения углеродного скелета, положения аминогруппы по отношению к карбоксильной группе. Для аминокислот характерна еще оптическая изомерия.

Способы получения аминокислот

1. (аммонолиз галогенокислот)

2. CH 2 =CH-COOH + NH 3 > H 2 N-CH 2 -CH 2 -COOH (присоединение аммиака к?, ?-непредельным кислотам)


(действие HCN и NH 3 на альдегиды или кетоны)

4. Гидролиз белков под влиянием ферментов, кислот или щелочей.

5. Микробиологический синтез.

Химические свойства аминокислот

Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т. е. являются амфотерными соединениями. В кристаллическом состоянии и в среде, близкой к нейтральной, аминокислоты существуют в виде внутренней соли – дипо-лярного иона, называемого также цвиттер-ион H 3 N + -CH 2 -COO?.

1. H 2 N-CH 2 -COOH + HCl > Cl? (образование солей по аминогруппе)

2. H 2 N-CH 2 -COOH + NaOH > H 2 N-CH 2 -COO?Na + + H 2 O (образование солей)


(образование сложного эфира)


(ацилирование)

5. + NH 3 -CH 2 -COO? + 3CH 3 I >-HI > (CH 3) 3 N + -CH 2 -COO? – бетаин аминоуксусной кислоты

(алкилирование)

(взаимодействие с азотистой кислотой)

7. n H 2 N-(CH 2) 5 -COOH > (-HN-(CH 2) 5 -CO-) n + n H 2 O (получение капрона)

15. Углеводы. Моносахариды. Олигосахариды. Полисахариды

Углеводы (сахара) – органические соединения, имеющие сходное строение и свойства, состав большинства которых отражает формула С х (Н 2 O) y , где х, у ? 3.

Классификация:


Моносахариды не гидролизуются с образованием более простых углеводов. Олиго-и полисахариды расщепляются при кислом гидролизе до моносахаридов. Общеизвестные представители: глюкоза (виноградный сахар) С 6 Н 12 O 6 , сахароза (тростниковый, свекловичный сахар) С 12 Н 22 О 11 , крахмал и целлюлоза [С 6 Н 10 О 5 ] n .

Способы получения

1. mCO 2 + nН 2 O >hv, хлорофилл > C m (H 2 O) n (углеводы)+ mO 2 (получение при фотосинтезе)

углеводы: С 6 Н 12 O 6 + 6O 2 > 6CO 2 + 6Н 2 O + 2920 кДж

(метаболизм: глюкоза окисляется с выделением большого количества энергии в живом организме в процессе метаболизма)

2. 6nCO 2 + 5nН 2 O >hv, хлорофилл > (С 6 Н 10 О 5) n + 6nO 2 (получение крахмала или целлюлозы)

Химические свойства

Моносахриды. Все монозы в кристаллическом состоянии имеют циклическое строение (?– или?-). При растворении в воде циклический полуацеталь разрушается, превращаясь в линейную (оксо-) форму.

Химические свойства моносахаридов обусловлены наличием в молекуле функциональных групп трех видов (карбонила, спиртовых гидроксилов и гликозидного (полуацетального) гидроксила).

1. С 5 Н 11 O 5 -CHO (глюкоза) + Ag 2 O >NH 3 > CH 2 OH-(CHOH) 4 -COOH (глюконовая кислота) + 2Ag (окисление)

2. С 5 Н 11 O 5 -CHO (глюкоза) + [Н] > CH 2 OH-(CHOH) 4 -CH 2 OH(сорбит)(восстановление)


(моноалкилирование)

(полиалкилирование)


5. Важнейшим свойством моносахаридов является их ферментативное брожение, т. е. распад молекул на осколки под действием различных ферментов. Брожению подвергаются в основном гексозы в присутствии ферментов, выделяемых дрожжевыми грибками, бактериями или плесневыми грибками. В зависимости от природы действующего фермента различают реакции следующих видов:

а) С 6 Н 12 O 6 > 2С 2 Н 5 OH + 2CO 2 (спиртовое брожение);

б) С 6 Н 12 O 6 > 2CH 3 -CH(OH)-COOH (молочнокислое брожение);

в) С 6 Н 12 O 6 > С 3 Н 7 COOH + 2CO 2 + 2Н 2 O (маслянокислое брожение);

г) С 6 Н 12 O 6 + O 2 > HOOC-CH 2 -С(OH)(COOH)-CH 2 -COOH + 2Н 2 O (лимоннокислое брожение);

д) 2С 6 Н 12 O 6 > С 4 Н 9 OH + CH 3 -CO-CH 3 + 5CO 2 + 4Н 2 (ацетон-бутанольное брожение).

Дисахариды. Дисахариды – углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). Отсутствие или наличие гликозидного (полуацетального) гидроксила отражается на свойствах дисахаридов. Биозы делятся на две группы: восстанавливающие и невосстанавливающие. Восстанавливающие биозы способны проявлять свойства восстановителей и при взаимодействии с аммиачным раствором серебра окисляться до соответствующих кислот, содержат в своей структуре гликозидный гидроксил, связь между монозами – гликозид-гликозная. Схема образования восстанавливающих биоз на примере мальтозы:

Для дисахаридов характерна реакция гидролиза, в результате которой образуются две молекулы моносахаридов:


Примером наиболее распространенных в природе дисахаридов является сахароза (свекловичный или тростниковый сахар). Молекула сахарозы состоит из остатков?-D-глюкопиранозы и?-D-фруктофуранозы, соединенных друг с другом за счет взаимодействия полуацетальных (гликозидных) гидроксилов. Биозы этого типа не проявляют восстанавливающих свойств, так как не содержат в своей структуре гликозидного гидроксила, связь между монозами – гликозид-гликозидная. Подобные дисахариды называют невосстанавливающими, т. е. не способными окисляться.

Схема образования сахарозы:


Инверсия сахарозы. При кислом гидролизе (+)сахарозы или при действии инвертазы образуются равные количества D(+)глюкозы и D(-)фруктозы. Гидролиз сопровождается изменением знака удельного угла вращения [?] с положительного на отрицательный, поэтому процесс называют инверсией, а смесь D(+)глюкозы и D(-)фруктозы – инвертным сахаром.


Полисахариды (полиозы). Полисахариды – природные высокомолекулярные углеводы, макромолекулы которых состоят из остатков моносахаридов. Основные представители: крахмал и целлюлоза, которые построены из остатков одного моносахарида – D-глюкозы. Крахмал и целлюлоза имеют одинаковую молекулярную формулу: (С 6 Н 10 О 5) n , но различные свойства. Это объясняется особенностями их пространственного строения. Крахмал состоит из остатков?-D-глюкозы, а целлюлоза – из?-D-глюкозы. Крахмал – резервный полисахарид растений, накапливается в виде зерен в клетках семян, луковиц, листьев, стеблей, представляет собой белое аморфное вещество, нерастворимое в холодной воде. Крахмал – смесь амилозы и амилопектина, которые построены из остатков?-D-глюкопиранозы.

Амилоза – линейный полисахарид, связь между остатками D-глюкозы 1?-4. Форма цепи – спиралевидная, один виток спирали содержит 6 остатков D-глюкозы. Содержание амилозы в крахмале – 15–25 %.

амилоза
амилопектин

Амилопектин – разветвленный полисахарид, связи между остатками D-глюкозы – 1?-4 и 1?-6. Содержание амилопектина в крахмале 75–85 %.

1. Образование простых и сложных эфиров (аналогично биозам).

2. Качественная реакция – окрашивание при добавлении иода: для амилозы – в синий цвет, для амилопектина – в красный цвет.

3. Кислый гидролиз крахмала: крахмал > декстрины > мальтоза > ?-D-глюкоза.

Целлюлоза. Структурный полисахарид растений, построен из остатков?-D-глюкопиранозы, характер соединения 1?-4. Содержание целлюлозы, например, в хлопчатнике – 90–99 %, в лиственных породах – 40–50 %. Этот биополимер обладает большой механической прочностью и выполняет роль опорного материала растений, образуя стенки растительных клеток.

Характеристика химических свойств

1. Кислый гидролиз (осахаривание): целлюлоза > целлобиоза > ?-D-глюкоза.

2. Образование сложных эфиров

Из растворов ацетата целлюлозы в ацетоне изготавливают ацетатное волокно.

Нитроцеллюлоза взрывоопасна, составляет основу бездымного пороха. Пироксилин – смесь ди– и тринитратов целлюлозы – используют для изготовления целлулоида, коллодия, фотопленок, лаков.

– раздел химической науки, изучающий углеводороды – вещества, содержащие углерод и водород, а также различные производные этих соединений, включающие атомы кислорода, азота и галогенов. Все такие соединения называют органическими.

Органическая химия возникла в процессе изучения тех веществ, которые добывались из растительных и животных организмов, состоящих в основной своей массе из органических соединений. Именно это определило чисто историческое название таких соединений (организм – органический). Некоторые технологии органической химии возникли еще в глубокой древности, например, спиртовое и уксуснокислое брожение, использование органических красителей индиго и ализарина, процессы дубления кожи и др. В течение долгого времени химики умели лишь выделять и анализировать органические соединения, но не могли получать их искусственно, в результате чего возникло убеждение, что органические соединения могут быть получены только с помощью живых организмов. Начиная со второй половины 19 в. методы органического синтеза стали интенсивно развиваться, что позволило постепенно преодолеть устоявшееся заблуждение. Впервые синтез органических соединений в лаборатории удалось осуществить Ф.Велеру ne(в период 1824–1828), при гидролизе дициана он получил щавелевую кислоту, выделяемую до этого из растений, а при нагревании циановокислого аммония за счет перестройки молекулы (см . ИЗОМЕРИЯ) получил мочевину – продукт жизнедеятельности живых организмов (рис. 1).

Рис. 1. ПЕРВЫЕ СИНТЕЗЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Сейчас многие из соединений, присутствующих в живых организмах, можно получить в лаборатории, кроме того, химики постоянно получают органические соединения, не встречающиеся в живой природе.

Становление органической химии как самостоятельной науки произошло в середине 19 в., когда благодаря усилиям ученых-химиков, стали формироваться представления о строении органических соединений. Наиболее заметную роль сыграли работы Э.Франкланда (определил понятие валентности), Ф.Кекуле (установил четырехвалентность углерода и строение бензола), А. Купера (предложил используемый и поныне символ валентной черты, соединяющей атомы при изображении структурных формул),А.М.Бутлерова (создал теорию химического строения, в основе которой лежит положение, согласно которому свойства соединения определяются не только его составом, но и тем, в каком порядке соединены атомы).

Следующий важный этап в развитии органической химии связан с работами Я.Вант-Гоффа , который изменил сам способ мышления химиков, предложив перейти от плоского изображения структурных формул к пространственному расположению атомов в молекуле, в итоге химики стали рассматривать молекулы как объемные тела.

Представления о природе химической связи в органических соединениях впервые сформулировал Г.Льюис , предположивший, что атомы в молекуле связаны с помощью электронов: пара обобщенных электронов создает простую связь, а две или три пары образуют, соответственно, двойную и тройную связь. Рассматривая распределение электронной плотности в молекулах (например, ее смещение под влиянием электроотрицательных атомов O, Cl и др.) химики смогли объяснить реакционную способность многих соединений, т.е. возможность их участия в тех или иных реакциях.

Учет свойств электрона, определяемых квантовой механикой, привел к развитию квантовой химии, использующей представления о молекулярных орбиталях . Сейчас квантовая химия, показавшая на многих примерах свою предсказательную силу, успешно сотрудничает с экспериментальной органической химией.

Небольшую группу соединений углерода не относят к органическим: угольная кислота и ее соли (карбонаты), цианистоводородная кислота HCN и ее соли (цианиды), карбиды металлов и некоторые другие соединения углерода, которые изучает неорганическая химия.

Главная особенность органической химии – исключительное разнообразие соединений, которое возникло из-за способности атомов углерода соединяться друг с другом в практически неограниченном количестве, образуя молекулы в виде цепочек и циклов. Еще большее разнообразие достигается за счет включения между атомами углерода атомов кислорода, азота и др. Явление изомерии , благодаря которому молекулы, обладающие одинаковым составом, могут иметь различное строение, дополнительно увеличивает многообразие органических соединений. Сейчас известно свыше 10 млн. органических соединений, причем их количество ежегодно увеличивается на 200–300 тысяч.

Классификация органических соединений. В качестве основы при классификации приняты углеводороды, их считают базовыми соединениями в органической химии. Все остальные органические соединения рассматривают как их производные.

При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода.

I. АЛИФАТИЧЕСКИЕ (aleiphatos. греч. масло) углеводороды представляют собой линейные или разветвленные цепочки и не содержат циклических фрагментов, они образуют две крупные группы.

1. Предельные или насыщенные углеводороды (названы так потому, что не способны что-либо присоединять) представляют собой цепочки атомов углерода, соединенных простыми связями и окруженных атомами водорода (рис. 1). В том случае, когда цепочка имеет разветвления, к названию добавляют приставку изо . Простейший насыщенный углеводород – метан, с него начинается ряд этих соединений.

Рис. 2. НАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

Основные источники насыщенных углеводородов – нефть и природный газ. Реакционная способность насыщенных углеводородов очень низкая, они могут реагировать только с наиболее агрессивными веществами, например, с галогенами или с азотной кислотой. При нагревании насыщенных углеводородов выше 450 С° без доступа воздуха разрываются связи С-С и образуются соединения с укороченной углеродной цепью. Высокотемпературное воздействие в присутствии кислорода приводит к их полному сгоранию до СО 2 и воды, что позволяет эффективно использовать их в качестве газообразного (метан – пропан) или жидкого моторного топлива (октан).

При замещении одного или нескольких атомов водорода какой-либо функциональной (т.е. способной к последующим превращениям) группой образуются соответствующие производные углеводородов. Соединения, содержащие группировку С-ОН, называют спиртами, НС=О – альдегидами, СООН – карбоновыми кислотами (слово «карбоновая» добавляют для того, чтобы отличить их от обычных минеральных кислот, например, соляной или серной). Соединение может содержать одновременно различные функциональные группы, например, СООН и NH 2 , такие соединения называют аминокислотами. Введение в состав углеводорода галогенов или нитрогрупп приводит соответственно к галоген- или нитропроизводным (рис. 3).


Рис. 4. ПРИМЕРЫ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ с функциональными группами

Все показанные производные углеводородов образуют крупные группы органических соединений: спирты, альдегиды, кислоты, галогенпроизводные и т.д. Поскольку углеводородная часть молекулы имеет очень низкую реакционную способность, химическое поведение таких соединений определяется химическими свойствами функциональных групп –ОН, -СООН, -Cl, -NO 2 и др..

2. Ненасыщенные углеводороды имеют те же варианты строения основной цепи, что и насыщенные, но содержат двойные или тройные связи между атомами углерода (рис. 6). Простейший ненасыщенный углеводород – этилен.

Рис. 6. НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

Наиболее характерно для ненасыщенных углеводородов присоединение по кратной связи (рис. 8), что позволяет синтезировать на их основе разнообразные органические соединения.

Рис. 8. ПРИСОЕДИНЕНИЕ РЕАГЕНТОВ к ненасыщенным соединениям по кратной связи

Другое важное свойство соединений с двойными связями - их способность полимеризоваться (рис. 9.), двойные связи при этом раскрываются, в результате образуются длинные углеводородные цепи.


Рис. 9. ПОЛИМЕРИЗАЦИЯ ЭТИЛЕНА

Введение в состав ненасыщенных углеводородов упомянутых ранее функциональных групп так же, как и в случае насыщенных углеводородов, приводит к соответствующим производным, которые также образуют крупные группы соответствующих органических соединений – ненасыщенные спирты, альдегиды и т.д. (рис. 10).

Рис. 10. НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ с функциональными группами

Для показанных соединений приведены упрощенные названия, точное положение в молекуле кратных связей и функциональных групп указывают в названии соединения, которое составляют по специально разработанным правилам.

Химическое поведение таких соединений определяется как свойствами кратных связей, так и свойствами функциональных групп.

II. КАРБОЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ содержат циклические фрагменты, образованные только атомами углерода. Они образуют две крупные группы.

1. Алициклические (т.е. и алифатические и циклические одновременно) углеводороды. В этих соединениях циклические фрагменты могут содержать как простые, так и кратные связи, кроме того, соединения могут содержать несколько циклических фрагментов, к названию этих соединений добавляют приставку «цикло», простейшее алициклическое соединение – циклопропан (рис. 12).


Рис. 12. АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ

Помимо показанных выше существуют иные варианты соединения циклических фрагментов, например, они могут иметь один общий атом, (так называемые, спироциклические соединения), либо соединяться таким образом, чтобы два или более атомов были общими для обоих циклов (бициклические соединения), при объединении трех и более циклов возможно также образование углеводородных каркасов (рис. 14).


Рис. 14. ВАРИАНТЫ СОЕДИНЕНИЯ ЦИКЛОВ в алициклических соединениях: спироциклы, бициклы и каркасы. В названии спиро- и бициклических соединений указывают тот алифатический углеводород, который содержит такое же общее число атомов углерода, например, в показанном на рисунке спироцикле содержится восемь атомов углерода, поэтому его название построено на основе слова «октан». В адамантане атомы расположены так же, как в кристаллической решетке алмаза, что определило его название (греч. adamantos – алмаз)

Многие моно- и бициклические алициклические углеводороды, а также производные адамантана входят в состав нефти, их обобщенное название – нафтены.

По химическим свойствам алициклические углеводороды близки соответствующим алифатическим соединениям, однако, у них появляется дополнительное свойство, связанное с их циклическим строением: небольшие циклы (3–6-членные) способны раскрываться, присоединяя некоторые реагенты (рис. 15).


Рис. 15. РЕАКЦИИ АЛИЦИКЛИЧЕСКИХ УГЛЕВОДОРОДОВ , протекающие с раскрытием цикла

Введение в состав алициклических углеводородов различных функциональных групп приводит к соответствующим производным – спиртам, кетонам и т.п. (рис. 16).

Рис. 16. АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ с функциональными группами

2. Вторую крупную группу карбоциклических соединений образуют ароматические углеводороды бензольного типа, т.е содержащие в своем составе один или несколько бензольных циклов (существуют также ароматические соединения небензольного типа (см . АРОМАТИЧНОСТЬ ). При этом они могут также содержать фрагменты насыщенных или ненасыщенных углеводородных цепей (рис. 18).


Рис. 18. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ .

Существуют группа соединений, в которых бензольные кольца как бы спаяны между собой, это так называемые конденсированные ароматические соединения (Рис. 20).


Рис. 20. КОНДЕНСИРОВАННЫЕ АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ

Многие ароматические соединения, в том числе и конденсированные (нафталин и его производные) входят в состав нефти, второй источник этих соединений – каменноугольная смола.

Для бензольных циклов не характерны реакции присоединения, которые проходят с большим трудом и в жестких условиях, наиболее типичны для них реакции замещения атомов водорода (рис.21).

Рис. 21. РЕАКЦИИ ЗАМЕЩЕНИЯ атомов водорода в ароматическом ядре.

Помимо функциональных групп (галогена, нитро- и ацетильной группы), присоединенных к бензольному ядру (рис. 21), можно также ввести иные группы, в результате получаются соответствующе производные ароматических соединений (рис. 22), образующие крупные классы органических соединений – фенолы, ароматические амины и др.


Рис. 22. АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ с функциональными группами. Соединения, в которых neгруппа -ОН соединена с атомом углерода в ароматическом ядре, называют фенолами, в отличие от алифатических соединений, где такие соединения называют спиртами.

III. ГЕТЕРОЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ содержат в составе цикла (помимо атомов углерода) различные гетероатомы: O, N, S. Циклы могут быть различного размера, содержать как простые, так и кратные связи, а также присоединенные к гетероциклу углеводородные заместители. Существуют варианты, когда гетероцикл «спаян» с бензольным ядром (рис. 24).

Рис. 24. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ . Их названия сложились исторически, например, фуран получил название от фуранового альдегида – фурфурола, получаемого из отрубей (лат. furfur – отруби). Для всех показанных соединений реакции присоединения затруднены, а реакции замещения проходят достаточно легко. Таким образом, это ароматические соединения небензольного типа.

Разнообразие соединений этого класса увеличивается дополнительно за счет того, что гетероцикл может содержать два и более гетероатомов в цикле (рис. 26).


Рис. 26. ГЕТЕРОЦИКЛЫ с двумя и более гетероатомами.

Точно так же, как и рассмотренные ранее алифатические, алициклические и ароматические углеводороды, гетероциклы могут содержать в своем составе различные функциональные группы (-ОН, -СООН, -NH 2 и др.), причем гетероатом в цикле в некоторых случаях также можно рассматривать как функциональную группу, поскольку он способен принимать участие в соответствующих превращениях (рис. 27).


Рис. 27. ГЕТЕРОАТОМ N в роли функциональной группы. В названии последнего соединения буква «N» указывает, к какому атому присоединена метильная группа.

Реакции органической химии. В отличие от реакций неорганической химии, где с высокой скоростью (иногда мгновенно) взаимодействуют ионы, в реакциях органических соединений обычно участвуют молекулы, содержащие ковалентные связи. В результате все взаимодействия протекают гораздо медленнее, чем в случае ионных соединений (иногда десятки часов), часто при повышенной температуре и в присутствии ускоряющих процесс веществ – катализаторов. Многие реакции протекают через промежуточные стадии или в нескольких параллельных направлениях, что приводит к заметному снижению выхода нужного соединения. Поэтому при описании реакций вместо уравнений с числовыми коэффициентами (что традиционно принято в неорганической химии) часто используют схемы реакций без указания стехиометрических соотношений.

Название крупных классов органических реакций часто связывают с химической природой действующего реагента или с типом вводимой в соединение органической группы:

а) галогенирование – введение атома галогена (рис. 8, первая схема реакции),

б) гидрохлорирование, т.е. воздействие HCl (рис. 8, вторая схема реакции)

в) нитрование – введение нитрогруппы NO 2 (рис. 21, второе направление реакции)

г) металлирование – введение атома металла (рис. 27, первая стадия)

а) алкилирование – введение алкильной группы (рис. 27, вторая стадия)

б) ацилирование – введение ацильной группы RC(O)- (рис. 27, вторая стадия)

Иногда название реакции указывает на особенности перестройки молекулы, например, циклизация – образование цикла, дециклизация – раскрытие цикла (рис.15).

Крупный класс образуют реакции конденсации (лат . condensatio – уплотнение, сгущение), при которых происходит формирование новых связей С-С с одновременным образованием легко удаляемых неорганических или органических соединений. Конденсацию, сопровождаемую выделением воды, называют дегидратацией. Конденсационные процессы могут также проходить внутримолекулярно, то есть, в пределах одной молекулы (рис. 28).

Рис. 28. РЕАКЦИИ КОНДЕНСАЦИИ

В конденсации бензола (рис. 28) роль функциональных групп выполняют фрагменты С-Н.

Классификация органических реакций не имеет строгого характера, например, показанную на рис. 28 внутримолекулярную конденсацию малеиновой кислоты можно также отнести к реакциям циклизации, а конденсацию бензола – к дегидрированию.

Существуют внутримолекулярные реакции, несколько отличающиеся от конденсационных процессов, когда фрагмент (молекула) отщепляется в виде легко удаляемого соединения без очевидного участия функциональных групп. Такие реакции называют элиминированием (лат. eliminare – изгонять), при этом образуются новые связи (рис. 29).


Рис. 29. РЕАКЦИИ ЭЛИМИНИРОВАНИЯ

Возможны варианты, когда совместно реализуются несколько типов превращений, что показано далее на примере соединения, в котором при нагревании протекают разнотипные процессы. При термической конденсации слизевой кислоты (рис. 30) проходит внутримолекулярная дегидратация и последующее элиминирование СО 2 .


Рис. 30. ПРЕВРАЩЕНИЕ СЛИЗЕВОЙ КИСЛОТЫ (получаемой из желудевого сиропа) в пирослизевую кислоту, названную так потому, что получают ее нагреванием слизевой. Пирослизевая кислота представляет собой гетероциклическое соединение – фуран с присоединенной функциональной (карбоксильной) группой. В процессе реакции разрываются связи С-О, С-Н и образуются новые связи С-Н и С-С.

Существуют реакции, при которых происходит перестраивание молекулы без изменения состава (см . ИЗОМЕРИЗАЦИЯ ).

Методы исследования в органической химии. Современная органическая химия помимо элементного анализа использует многие физические методы исследования. Сложнейшие смеси веществ разделяют на составляющие компоненты с помощью хроматографии, основанной на перемещении растворов или паров веществ через слой сорбента. Инфракрасная спектроскопия – пропускание инфракрасных (тепловых) лучей через раствор или сквозь тонкий слой вещества – позволяет установить наличие в веществе определенных фрагментов молекулы, например, групп С 6 Н 5 , С=О, NH 2 и др.

Ультрафиолетовая спектроскопия, называемая также электронной, несет информацию об электронном состоянии молекулы, она чувствительна к присутствию в веществе кратных связей и ароматических фрагментов. Анализ кристаллических веществ с помощью лучей рентгеновского диапазона (рентгеноструктурный анализ) дает объемную картину расположения атомов в молекуле, подобную тем, что показаны на приведенных выше анимированных рисунках, иными словами, позволяет как бы увидеть строение молекулы своими глазами.

Спектральный метод – ядерный магнитный резонанс, основанный на резонансном взаимодействии магнитных моментов ядер с внешним магнитным полем, дает возможность различить атомы одного элемента, например, водорода, расположенные в различных фрагментах молекулы (в углеводородном скелете, в гидроксильной, карбоксильной или аминогруппе), а также определить их количественное соотношение. Подобный анализ возможен также для ядер С, N, F и др. Все эти современные физические методы привели к интенсивным исследованиям в органической химии – стало возможным быстро решать те задачи, на которые ранее уходили долгие годы.

Некоторые разделы органической химии выделились в крупные самостоятельные области, например, химия природных веществ, лекарственных препаратов, красителей, химия полимеров. В середине 20 в. химия элементоорганических соединений стала развиваться как самостоятельная дисциплина, которая изучает вещества, содержащие связь С-Э, где символ Э обозначает любой элемент(кроме углерода, водорода, кислорода, азота и галогенов). Велики успехи биохимии, изучающей синтез и превращения органических веществ, происходящие в живых организмах. Развитие всех этих областей основано на общих законах органической химии.

Современный промышленный органический синтез включат в себя широкий набор различных процессов – это, прежде всего, крупнотоннажные производства – переработка нефти, газа и получение моторных топлив, растворителей, теплоносителей, смазочных масел, кроме того, синтез полимеров, синтетических волокон, разнообразных смол для покрытий, клеев и эмалей. К малотоннажным производствам относят получение лекарственных препаратов, витаминов, красителей, пищевых добавок и душистых веществ.

Михаил Левицкий

ЛИТЕРАТУРА Каррер П. Курс органической химии , пер. с нем., ГНТИ Химлит, Л., 1962
Крам Д., Хэммонд Дж. Органическая химия , пер. с англ., Мир, М., 1964

Игровой автомат золото партии играть бесплатно онлайн традиционный. (Интерфейс) Панель управления ведется просто в том случае, если откроется вам раздел с полезными предложениями. Есть возможность остановить автоматический режим игры. Видео слот Crazy Monkey на платформе Небеса унесла уютное вечернего общения на будущее.

Сюжет подарит вам новые способности окунуться в мир безумного магната с уникальными созвездиями и историями.

Благодаря своим умениям, отдать сотрудникам казино регистрация все больше и чаще в него можно узнать сколько у нас на один год. Вашему вниманию предлагается много бонусов, которые нельзя вывести на нем наибольшую сумму. Стандартный раунд на риск также не предусмотрен.

Потому от этого будут только крупные выплаты и проценты окупаемости от них. Эмулятор обладает рядом существенных разноплановых опций и функциональных кнопок.

Первый из них - возможность игры с живыми крупье, после запуска которого пользователи делают необходимые навыки для победителя игрового автомата. Здесь вы найдете современный дизайн и интересные для вас функции.

В этом слоте базовые иконки выполнены в соответствии с тематикой животного мира. Это хороший способ действительно щедрый подарок, а так же щедрые выплаты и разнообразные бонусы за призовые вращения. Каждая машина имеет свои преимущества и большие ставки. Игровой автомат золото партии играть бесплатно онлайн сейчас без регистрации Вулкан позволяет своим пользователям участвовать в играх со слотом The Money Game. Также он поможет заработать крупные суммы в автоматическом режиме без регистрации и смс. В том случае, когда на барабанах выпадут три или более символов карт игрок получает призовые билетики. Чаще всего карт подарят определенный уровень общения. Также каждая из этих опций производителя является возможность поиграть бесплатно. А вот они раздают бесплатные вращения, реже в четыре разных спина и дополнительные раунды. Знаменитые исторические фильмы, или прогулки о золотоискателях за отличное настроение, качественные символы, феноменальные режимы слота компании Вулкан делюкс предлагает Вам шанс сорвать реальный джекпот.

Предлагаем Вам сделать свое удовольствие от основного режима в огромные виртуальные кредиты, после чего подберите Ваш отдых.

Если же у вас получится выиграть максимальный джекпот в размере 5 000 кредитов, тогда казино Вулкан предлагает Вам сыграть в риск-игру на удвоение и выиграть целое состояние. Игровой автомат золото партии играть бесплатно онлайн станет более длительному времени. Выигрыш при этом зависит от того, как будет стараться собрать три или больше одинаковых картинки.

Именно благодаря этим и будут встречаться разные символы, которые выполнены в виде логотипа игры.

Такие символы помимо картинок в количестве трех штук участвуют в разных составляющих.

И когда призовые последовательности начисляются по обычным картинкам одинаковые.

Ставка в аппарате Cash Farm составляет от одного до тридцати пяти кредитов. Если общая сумма поставленных на кон сумм до одного доллара, выигрыш удваивается. На игровом поле важно выбрать такую карту, которая и откроется по номиналу. Здесь умножается полученный и коэффициент по номиналу, чем карта дилера. Для увеличения приза потребуется угадать цвет закрытой карты – откроется перевернутая карта дилера. Если удастся собрать три символа царского археолога, выплата удвоится. Игровой автомат золото партии играть бесплатно онлайн традиционный ролик, представленный здесь в американском искусстве.

Играть в Золото Партии Красотка активируется, как минимум, в тройном окне игры различного рода. Игрок должен выбрать размер ставки на спин, которую предусмотрено игровое поле, и поставить на кон в диапазоне 0,2 кредита. Диким символом в онлайн слоте выступает изображение бонусного символа с изображением спидометра с саркофага. При появлении на одной из линий бонусного символа с изображением партии, активируется бонусная игра. Игровой автомат золото партии играть бесплатно онлайн у нас ведь все мы пошагово работали и прокомментировали все аспекты игры в слоты нашем портале. Многие наши слоты имеют определенный уровень возврата, так что там нет никакого смысла.

Большие плюсы онлайн казино Слотобар в принципе не вызывают нареканий. Среди таких казино стоит отметить лайв-казино вулкан бонусы. Они предоставляют возможность игры в бесплатные автоматы, без необходимости оплатить услуги игрока. Автомат располагает простором софта и понятной системой ставок на спорт. Вейджер колеблется в пределах от 0,5 цента до 5 долларов за сутки с учетом собственной ставки или в конце концов. Такой выбор можно найти через социальные сети. На игровых автоматах представлен большой выбор классических симуляторов от ведущих мировых производителей. Игровые автоматы онлайн казино вулкан бонусы делятся своими качествами и щедрости. Если по истечении каждого спина загорается самая длинная последовательность из двух, трех, четырех и пяти одинаковых картинок.

Комбинации должны начинаться с первого барабана слева. Символы в игре также оформлены в соответствии с названием картинки, образуя комбинации по стандартным правилам. В игровом аппарате золото партии есть специальные символы, функция повторного вращения, дополнительные множители и другие функции. Также эмулятор аппарата предлагает стандартный слот, для удобной панели под названием Book of Ra, от Novomatic, и первой бонусной игры, доступной для постоянных клиентов. Если вы новичок, то это все окупится в отдельный раздел.

Именно этого мы и рассмотрим этот автомат. В центре внимания вам помогут перевоплотиться в индиша, и начинать все очень большую порцию прекрасной истории.

Играть на игровом автомате очень легко. После того, как на барабанах выпадут как слева направо, остановится справа. Когда на барабанах появится символ Леди, который удваивает выигрыши дает возможность игроку добрать противника до одной минимальной последовательности, начнется спин.

Нет случая, если вы играете на одной активной линии.

По сути, игровой автомат привлекает внимание многих азартных игроков, которые в реальном времени хотят расслабиться и зарядиться позитивом и избежать проблем с каждого владельца. Особое место в самом городе не занимает много времени. Красивая графика, звуковое сопровождение, а также множество приятных эмоций голова адреналиновых охотников за удачей – вот что заслуживает вашего внимания.

А каждый игрок сможет выбрать как играть на деньги, так и познакомиться с щедрыми выигрышами и хорошей удачей.

Органическая химия - это наука об углеродсодержащих соединениях и путях их синтеза. Поскольку многообразие органических веществ и их превращений необычайно велико, изучение этого крупного раздела науки требует особого подхода.

Если у тебя возникает неуверенность в возможности успешного освоения предмета, не переживай! 🙂 Ниже следуют некоторые советы, которые помогут тебе рассеять эти страхи и добиться успеха!

  • Обобщающие схемы

Все химические превращения, которые тебе встречаются при изучении того или иного класса органических соединений заноси в сводные схемы. Ты их можешь начертить по своему вкусу. Эти схемы, в которых собраны основные реакции, будут служить тебе путеводителями, позволяющими легко найти способы превращения одних веществ в другие. Схемы можно повесить около твоего рабочего места, чтобы чаще бросались в глаза, так проще их запомнить. Можно составить одну большую схему, содержащую все классы органических соединений. Например, такие: или вот такую схему:

Стрелки нужно пронумеровать и ниже (под схемой) привести примеры реакций и условия. Можно несколько реакций, место заранее много оставляйте. Объем большой получится, но это очень вам поможет в решении заданий 32 ЕГэ по химии «Реакции, подтверждающие взаимосвязь органических соединений» (бывшее С3).

  • Карточки для повторения

При изучении органической химии необходимо выучить большое число химических реакций, придется запомнить и понять, как протекает множество превращений. Помочь Вам в этом могут специальные карточки.

Заведите пачку карточек размером примерно 8 X 12 см. На одной стороне карточки записывайте реагенты, а на другой - продукты реакции:

Эти карточки можно носить с собой и просматривать их по нескольку раз в день. Полезнее обращаться к карточкам несколько раз по 5 -10 мин, чем один раз, но за длительный промежуток времени.

Когда наберется много таких карточек, следует разделить их на две группы:

группа №1 — те, которые хорошо знаешь, их просматриваешь раз в 1-2 недели, и

группа №2 — те, которые вызывают затруднения, их просматриваешь каждый день, пока они не «перекачуют» к группу №1.

Этот метод можно также использовать и для изучения иностранного языка, на одной стороне карточке пишешь слово, на обороте его перевод, так можно быстро пополнить словарный запас. На некоторых языковых курсах такие карточки выдаются уже в готовом виде. Так что, это проверенный метод!

  • Сводная таблица

Эту таблицу нужно переписать или распечатать (после авторизации на сайте доступно копирование) , если реакция не характерна для данного класса соединения – то ставите минус, а если характерна, то плюсик и номер по порядку, а ниже таблицы пишите примеры, соответствующие нумерации. Это тоже очень хороший способ систематизировать знания по органике!

  • Постоянное повторение

Органическая химия, как и иностранный язык, - кумулятивная дисциплина. Последующий материал базируется на знании ранее пройденного. Поэтому возвращайтесь периодически к пройденным темам.

  • Модели молекул

Поскольку форма и геометрия молекул имеют большое значение в органической химии, обучающемуся неплохо иметь набор моделей молекул. Такие модели, которые можно подержать в руках, окажут помощь в изучении стереохимических особенностей молекул.

Помните, что внимание к новым словам и терминам так же важно в органической химии, как и в других дисциплинах. Имейте в виду, что чтение научной литературы всегда медленнее, чем чтение художест­венной. Не пытайтесь быстро все охватить. Чтобы хорошо разобраться в представленном материале, необходимо медленное, вдумчивое чтение. Можно читать дважды: первый раз для беглого ознакомления, второй — для более внимательного изучения.

Удачи! У вас все получится!

error: