Металлическая связь возникает между. Металлическая связь: механизм образования и примеры. Ковалентная: полярная и неполярная

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).

Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Межмолекулярные связи - связи между молекулами. Это водородная связь, ион-дипольная связь (за счет образования этой связи происходит, например, образование гидратной оболочки ионов), диполь-дипольная (за счет образования этой связи объединяются молекулы полярных веществ, например, в жидком ацетоне) и др.

Ионная связь - химическая связь, образованная за счет электростатического притяжения разноименно заряженных ионов. В бинарных соединениях (соединениях двух элементов) она образуется в случае, когда размеры связываемых атомов сильно отличаются друг от друга: одни атомы большие, другие маленькие - то есть одни атомы легко отдают электроны, а другие склонны их принимать (обычно это атомы элементов, образующих типичные металлы и атомы элементов, образующих типичные неметаллы); электроотрицательность таких атомов также сильно отличается.
Ионная связь ненаправленная и не насыщаемая.

Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а) H· + ·H H:H H-H H 2 (одна общая пара электронов; H одновалентен);
б) NN N 2 (три общие пары электронов; N трехвалентен);
в) H-F HF (одна общая пара электронов; H и F одновалентны);
г) NH 4 + (четыре общих пары электронов; N четырехвалентен)
    По числу общих электронных пар ковалентные связи делятся на
  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную . Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .

По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.
-Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

Гибридизация атомных орбиталей и электронных облаков - предполагаемое выравнивание атомных орбиталей по энергии, а электронных облаков по форме при образовании атомом ковалентных связей.
Чаще всего встречается три типа гибридизации: sp -, sp 2 и sp 3 -гибридизация. Например:
sp -гибридизация - в молекулах C 2 H 2 , BeH 2 , CO 2 (линейное строение);
sp 2 -гибридизация - в молекулах C 2 H 4 , C 6 H 6 , BF 3 (плоская треугольная форма);
sp 3 -гибридизация - в молекулах CCl 4 , SiH 4 , CH 4 (тетраэдрическая форма); NH 3 (пирамидальная форма); H 2 O (уголковая форма).

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr 2 , Ca 2 Cu, Cu 5 Zn 8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.

Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях, когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:

H—O—H ··· OH 2 , H—O—H ··· NH 3 , H—O—H ··· F—H, H—F ··· H—F.

Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

Мерой прочности любой связи является энергия связи.
Энергия связи - энергия необходимая для разрыва данной химической связи в 1 моле вещества. Единица измерений - 1 кДж/моль.

Энергии ионной и ковалентной связи - одного порядка, энергия водородной связи - на порядок меньше.

Энергия ковалентной связи зависит от размеров связываемых атомов (длины связи) и от кратности связи. Чем меньше атомы и больше кратность связи, тем больше ее энергия.

Энергия ионной связи зависит от размеров ионов и от их зарядов. Чем меньше ионы и больше их заряд, тем больше энергия связи.

Строение вещества

По типу строения все вещества делятся на молекулярные и немолекулярные . Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.

По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).

Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H 2 , O 2 , N 2 , Cl 2 , Br 2 , S 8 , P 4 и другие простые вещества; CO 2 , SO 2 , N 2 O 5 , H 2 O, HCl, HF, NH 3 , CH 4 , C 2 H 5 OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO 2 , SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде. Следует отметить, что в ионных веществах, кристаллы которых состоят из сложных ионов, есть и ковалентные связи, например: (Na +) 2 (SO 4 2-), (K +) 3 (PO 4 3-), (NH 4 +)(NO 3-) и т. д. Ковалентными связями связаны атомы, из которых состоят сложные ионы.

Металлы (вещества с металлической связью) очень разнообразны по своим физическим свойствам. Среди них есть жидкость (Hg), очень мягкие (Na, K) и очень твердые металлы (W, Nb).

Характерными физическими свойствами металлов является их высокая электропроводность (в отличие от полупроводников, уменьшается с ростом температуры), высокая теплоемкость и пластичность (у чистых металлов).

В твердом состоянии почти все вещества состоят из кристаллов. По типу строения и типу химической связи кристаллы ("кристаллические решетки") делят на атомные (кристаллы немолекулярных веществ с ковалентной связью), ионные (кристаллы ионных веществ), молекулярные (кристаллы молекулярных веществ с ковалентной связью) и металлические (кристаллы веществ с металлической связью).

Задачи и тесты по теме "Тема 10. "Химическая связь. Строение вещества"."

  • Типы химической связи - Строение вещества 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Заданий: 9 Тестов: 1

Проработав эту тему, Вы должны усвоить следующие понятия: химическая связь, межмолекулярная связь, ионная связь, ковалентная связь, металлическая связь, водородная связь, простая связь, двойная связь, тройная связь, кратные связи, неполярная связь, полярная связь, электроотрицательность, поляризация связи, - и -связь, гибридизация атомных орбиталей, энергия связи.

Вы должны знать классификацию веществ по типу строения, по типу химической связи, зависимость свойств простых и сложных веществ от типа химической связи и типа "кристаллической решетки".

Вы должны уметь: определять тип химической связи в веществе, тип гибридизации, составлять схемы образования связей, пользоваться понятием электроотрицательность, рядом электроотрицательностей; знать как меняется электроотрицательность у химических элементов одного периода, и одной группы для определения полярности ковалентной связи.

Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


Рекомендованная литература:
  • О. С. Габриелян, Г. Г. Лысова. Химия 11 кл. М., Дрофа, 2002.
  • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.

Всем металлам присущи такие характеристики, как:

Малое количество электронов на внешнем энергетическом уровне (кроме некоторых исключений, у которых их может быть 6,7 и 8);

Большой атомный радиус;

Низкая энергия ионизации.

Все это способствует легкому отделению внешних неспаренных электронов от ядра. При этом свободных орбиталей у атома остается очень много. Схема образования металлической связи как раз и будет показывать перекрывание многочисленных орбитальных ячеек разных атомов между собой, которые в результате и формируют общее внутрикристаллическое пространство. В него подаются электроны от каждого атома, которые начинают свободно блуждать по разным частям решетки. Периодически каждый из них присоединяется к иону в узле кристалла и превращает его в атом, затем снова отсоединяется, формируя ион.

Таким образом, металлическая связь - это связь между атомами, ионами и свободными электронами в общем кристалле металла. Электронное облако, свободно перемещающееся внутри структуры, называют "электронным газом". Именно им объясняется большинство физических свойств металлов и их сплавов.

Как конкретно реализует себя металлическая химическая связь? Примеры можно привести разные. Попробуем рассмотреть на кусочке лития. Даже если взять его размером с горошину, атомов там будут тысячи. Вот и представим себе, что каждый из этих тысяч атомов отдает свой валентный единственный электрон в общее кристаллическое пространство. При этом, зная электронное строения данного элемента, можно увидеть количество пустующих орбиталей. У лития их будет 3 (р-орбитали второго энергетического уровня). По три у каждого атома из десятков тысяч - это и есть общее пространство внутри кристалла, в котором "электронный газ" свободно перемещается.

Вещество с металлической связью всегда прочное. Ведь электронный газ не позволяет кристаллу рушиться, а лишь смещает слои и тут же восстанавливает. Оно блестит, обладает определенной плотностью (чаще всего высокой), плавкостью, ковкостью и пластичностью.



Где еще реализуется металлическая связь? Примеры веществ:

Металлы в виде простых структур;

Все сплавы металлов друг с другом;

Все металлы и их сплавы в жидком и твердом состоянии.

Конкретных примеров можно привести просто неимоверное количество, ведь металлов в периодической системе более 80!

Механизм образования в общем виде выражается следующей записью: Ме 0 - e - ↔ Ме n+ . Из схемы очевидно, какие частицы присутствуют в кристалле металла.

Любой металл способен отдавать электроны, превращаясь в положительно заряженный ион.

На примере железа: Fe 0 -2e - = Fe 2+

Куда направляются отделившиеся отрицательно заряженные частицы - электроны? Минус всегда притягивается к плюсу. Электроны притягиваются к другому иону (положительно заряженному) железа в кристаллической решетке: Fe 2+ +2e - = Fe 0

Ион становится нейтральным атомом. И такой процесс повторяется много раз.

Получается, что свободные электроны железа находятся в постоянном движении по всему объему кристалла, отрываясь и присоединяясь к ионам в узлах решетки. Другое название этого явления -делокализованное электронное облако . Термин «делокализованный» обозначает - свободный, не привязанный.

Крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными: гелий, неон, аргон, криптон, ксенон и радон. Чаще же всего химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки. Такие объединения атомов могут насчитывать несколько единиц, сотен, тысяч или даже больше атомов. Сила, которая удерживает эти атомы в составе таких группировок, называется химическая связь .

Другими словами, можно сказать, что химической связью называют взаимодействие, которое обеспечивает связь отдельных атомов в более сложные структуры (молекулы, ионы, радикалы, кристаллы и др.).

Причиной образования химической связи является то, что энергия более сложных структур меньше суммарной энергии отдельных, образующих ее атомов.

Так, в частности, если при взаимодействии атомов X и Y образуется молекула XY, это означает, что внутренняя энергия молекул этого вещества ниже, чем внутренняя энергия отдельных атомов, из которых оно образовалось:

E(XY) < E(X) + E(Y)

По этой причине при образовании химических связей между отдельными атомами выделятся энергия.

В образовании химических связей принимают участие электроны внешнего электронного слоя с наименьшей энергией связи с ядром, называемые валентными . Например, у бора таковыми являются электроны 2 энергетического уровня – 2 электрона на 2s- орбитали и 1 на 2p -орбитали:

При образовании химической связи каждый атом стремится получить электронную конфигурацию атомов благородных газов, т.е. чтобы в его внешнем электронном слое было 8 электронов (2 для элементов первого периода). Это явление получило название правила октета.

Достижение атомами электронной конфигурации благородного газа возможно, если изначально одиночные атомы сделают часть своих валентных электронов общими для других атомов. При этом образуются общие электронные пары.

В зависимости от степени обобществления электронов можно выделить ковалентную, ионную и металлическую связи.

Ковалентная связь

Ковалентная связь возникает чаще всего между атомами элементов неметаллов. Если атомы неметаллов, образующие ковалентную связь, относятся к разным химическим элементам, такую связь называют ковалентной полярной. Причина такого названия кроется в том, что атомы разных элементов имеют и различную способность притягивать к себе общую электронную пару. Очевидно, что это приводит к смещению общей электронной пары в сторону одного из атомов, в результате чего на нем формируется частичный отрицательный заряд. В свою очередь, на другом атоме формируется частичный положительный заряд. Например, в молекуле хлороводорода электронная пара смещена от атома водорода к атому хлора:

Примеры веществ с ковалентной полярной связью:

СCl 4 , H 2 S, CO 2 , NH 3 , SiO 2 и т.д.

Ковалентная неполярная связь образуется между атомами неметаллов одного химического элемента. Поскольку атомы идентичны, одинакова и их способность оттягивать на себя общие электроны. В связи с этим смещения электронной пары не наблюдается:

Вышеописанный механизм образования ковалентной связи, когда оба атома предоставляют электроны для образования общих электронных пар, называется обменным.

Также существует и донорно-акцепторный механизм.

При образовании ковалентной связи по донорно-акцепторному механизму общая электронная пара образуется за счет заполненной орбитали одного атома (с двумя электронами) и пустой орбитали другого атома. Атом, предоставляющий неподеленную электронную пару, называют донором, а атом со свободной орбиталью – акцептором. В качестве доноров электронных пар выступают атомы, имеющие спаренные электроны, например N, O, P, S.

Например, по донорно-акцепторному механизму происходит образование четвертой ковалентной связи N-H в катионе аммония NH 4 + :

Помимо полярности ковалентные связи также характеризуются энергией. Энергией связи называют минимальную энергию, необходимую для разрыва связи между атомами.

Энергия связи уменьшается с ростом радиусов связываемых атомов. Так, как мы знаем, атомные радиусы увеличиваются вниз по подгруппам, можно, например, сделать вывод о том, что прочность связи галоген-водород увеличивается в ряду:

HI < HBr < HCl < HF

Также энергия связи зависит от ее кратности – чем больше кратность связи, тем больше ее энергия. Под кратностью связи понимается количество общих электронных пар между двумя атомами.

Ионная связь

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи. Если в ковалентной-полярной связи общая электронная пара смещена частично к одному из пары атомов, то в ионной она практически полностью «отдана» одному из атомов. Атом, отдавший электрон(ы), приобретает положительный заряд и становится катионом , а атом, забравший у него электроны, приобретает отрицательный заряд и становится анионом .

Таким образом, ионная связь — это связь, образованная за счет электростатического притяжения катионов к анионам.

Образование такого типа связи характерно при взаимодействии атомов типичных металлов и типичных неметаллов.

Например, фторид калия. Катион калия получается в результате отрыва от нейтрального атома одного электрона, а ион фтора образуется при присоединении к атому фтора одного электрона:

Между получившимися ионами возникает сила электростатического притяжения, в результате чего образуется ионное соединение.

При образовании химической связи электроны от атома натрия перешли к атому хлора и образовались противоположно заряженные ионы, которые имеют завершенный внешний энергетический уровень.

Установлено, что электроны от атома металла не отрываются полностью, а лишь смещаются в сторону атома хлора, как в ковалентной связи.

Большинство бинарных соединений, которые содержат атомы металлов, являются ионными. Например, оксиды, галогениды, сульфиды, нитриды.

Ионная связь возникает также между простыми катионами и простыми анионами (F − , Cl − , S 2-), а также между простыми катионами и сложными анионами (NO 3 − , SO 4 2- , PO 4 3- , OH −). Поэтому к ионным соединениям относят соли и основания (Na 2 SO 4 , Cu(NO 3) 2 , (NH 4) 2 SO 4), Ca(OH) 2 , NaOH)

Металлическая связь

Данный тип связи образуется в металлах.

У атомов всех металлов на внешнем электронном слое присутствуют электроны, имеющие низкую энергию связи с ядром атома. Для большинства металлов, энергетически выгодным является процесс потери внешних электронов.

Ввиду такого слабого взаимодействия с ядром эти электроны в металлах весьма подвижны и в каждом кристалле металла непрерывно происходит следующий процесс:

М 0 — ne − = M n + ,

где М 0 – нейтральный атом металла, а M n + катион этого же металла. На рисунке ниже представлена иллюстрация происходящих процессов.

То есть по кристаллу металла «носятся» электроны, отсоединяясь от одного атома металла, образуя из него катион, присоединяясь к другому катиону, образуя нейтральный атом. Такое явление получило название “электронный ветер”, а совокупность свободных электронов в кристалле атома неметалла назвали “электронный газ”. Подобный тип взаимодействия между атомами металлов назвали металлической связью.

Водородная связь

Если атом водорода в каком-либо веществе связан с элементом с высокой электроотрицательностью (азотом, кислородом или фтором), для такого вещества характерно такое явление, как водородная связь.

Поскольку атом водорода связан с электроотрицательным атомом, на атоме водорода образуется частичный положительный заряд, а на атоме электроотрицательного элемента — частичный отрицательный. В связи с этим становится возможным электростатическое притяжения между частично положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой. Например водородная связь наблюдается для молекул воды:

Именно водородной связью объясняется аномально высокая температура плавления воды. Кроме воды, также прочные водородные связи образуются в таких веществах, как фтороводород, аммиак, кислородсодержащие кислоты, фенолы, спирты, амины.

Металлическая связь – это связь, образованная между атомами в условиях сильновыраженной делокализации (распространение валентных электронов по нескольким химическим связям в соединении) и дефицита электронов в атоме (кристалле). Является ненасыщенной и пространственно ненаправленной.

Делокализация валентных электронов в металлах является следствием многоцентрового характера металлической связи. Многоцентровость металлической связи обеспечивает высокую электрическую проводимость и теплопроводность металлов.

Насыщаемость определяется числом валентных орбиталей, участвующих в образовании хим. связи. Количественная характеристика – валентность. Валентность – число связей, которые может образовывать один атом с другими; - определяется числом валентных орбиталей, участвующих в образовании связи по обменному и донорно-акцепторному механизму.

Направленность – связь образуется в направлении максимального перекрывания электронных облаков; - определяет химическое и кристаллохимическое строение вещества (как связаны атомы в кристаллической решетке).

При образовании ковалентной связи электронная плотность концентрируется между взаимодействующими атомами (рисунок из тетради) . В случае металлической связи электронная плотность делокализована по всему кристаллу.(рисунок из тетради)

(пример из тетради)

По причине ненасыщенности и ненаправленности металлической связи, металлические тела (кристаллы) являются высоко симметричными и высоко координированными. Подавляющему большинству кристаллических структур металла отвечают 3 типа упаковок атома в кристаллах:

1. ГЦК – гренецентрированна кубическая плотноупокованная структура. Плотность упаковки – 74,05%, координационное число = 12.

2. ГПУ – гексогональная плотноупакованная структура, плотность упаковки = 74,05%, к.ч. = 12.

3. ОЦК – объем центрируется, плотность упаковки = 68,1%, к.ч. = 8.

Металлическая связь не исключает некоторой доли ковалентности. Металлическая связь в чистом виде характерна только для щелочных и щелочно-земельных металлов.

Чистая металлическая связь характеризуется энергией порядка 100/150/200 кДж/моль, в 4 раза слабее ковалентной.

36. Хлор и его свойства. В=1(III, IV, V и VII)степ.окисления=7, 6, 5, 4, 3, 1, −1

жёлто-зелёный газ с резким раздражающим запахом. Xлор встречается в природе только в виде соединений. В природе в виде хлоридова калия,магния,нитрия,образовавшихся в рез-те испарения бывших морей,озёр. Получение.пром :2NaCl+2H2O=2NaOH+H2+Cl2,электролизом вод р-ов хлоридовMe.\2KMnO4+16HCl=2MnCl2+2KCl+8H2O+5Cl2/Химически хлор очень активен, непосред¬ственно соединяется почти со всеми Ме, и с неметаллами (кроме углерода, азота, кислорода, инертных газов),замещает водород в пред УВ и присоединяется к ненасыщенным соединениям,вытесняет бром и иод из их соединений.Фосфор воспламеняется в атмосфере хлора РСl3, а при дальнейшем хлорировании - РСl5; сера с хлором = S2Сl2, SСl2 и другие SnClm. Смесь хлора с водородом горит.С кислородом хлор образует окислы: Cl2O, ClO2, Cl2O6, Cl2O7, Cl2O8, а также гипохлориты (соли хлорноватистой кислоты), хлориты, хлораты и перхлораты. Все кислородные соединения хлора образуют взрывоопасные смеси с легко окисляющимися веществами. Окислы хлора малостойки и могут самопроизвольно взрываться, гипохлориты при хранении медленно разлагаются, хлораты и перхлораты могут взрываться под влиянием инициаторов. в воде -хлорноватистую и сол: Сl2 + Н2О = НСlО + НСl. При хлорировании водных растворов щелочей на холоду образуются гипохлориты и хлориды: 2NаОН + Сl2 = NаСlO + NаСl + Н2О, а при нагревании - хлораты. При взаимодействии аммиака с хлором образуется трёххлористый азот. с другими галогенами межгалогенные соединения. Фториды СlF, СlF3, СlF5 очень реакционноспособны; например, в атмосфере СlF3 стеклянная вата самовоспламеняется. Известны соединения хлора с кислородом к фтором - оксифториды хлора: СlО3F, СlО2F3, СlOF, СlОF3 и перхлорат фтора FСlO4.Применение: производство хим.соед,очистка воды,синтезы в пищевой,фарм пром-ти-бактерицид,антисепт.,отбеливание бумаг,тканей,пиротехника,спички,в СХ уничтожает сорняки.

Биологическая роль: биогенный, компонент тканей растений и животных. 100г основное осмотически активное вещество плазмы крови, лимфы, спинномозговой жидкости и некоторых тканей.Сут потребн хлористого натрия =6-9г-хлеб, мясные и молочные продукты. Играет роль в водно-солевом обмене, способствуя удержанию тканями воды. Регуляция кислотно-щелочного равновесия в тканях осуществляется наряду с другими процессами путём изменения в распределении хлора между кровью и другими тканями, хлор участвует в энергетическом обмене у растений, активируя как окислительное фосфорилирование, так и фотофосфорилирование. Xлор положительно влияет на поглощение корнями кислорода,компонент жел.сока.

37. Водород, вода.В=1;ст.окисл=+1-1 Водород ион полностью лишен электронных оболочек, может подходить на очень близкие расстояния, внедряться в электронные оболочки.

Самый распространенный элемент Вселенной. Он составляет основ­ную массу Солнца, звезд и других космических тел.В свободном состоянии на Земле он встре­чается сравнительно редко - содержится в нефтяных и горючих газах, присут­ствует в виде включений в некоторых минералах,больш.часть в составе воды.Получение: 1. Лаборатория Zn+2HCl=ZnCl2+H 2 ; 2.Si+2NaOH+H 2 O=Na 2 SiO 3 +2H 2 ; 3. Al+NaOH+H 2 O=Na(AlOH) 4 +H 2 . 4. В промышленности: конверсия, электролиз:СH4+H2O=CO+3H2\CO+H2O=CO+H 2/Хим св-ва. В н.у.:H 2 +F 2 =2HF. При облучении, освещении, катализаторы:H 2 +O 2 ,S,N,P=H 2 O,H 2 S,NH 3 , Ca + Н2 = СаН2\F2 + H2 = 2HF\N2 + 3H2 → 2NH3\Cl2 + H2 → 2HCl, 2NO+2H2=N2+2H2O,CuO+H2=Cu+H2O,CO+H2=CH3OH. Водород образует гидриды: ионные, ковалентные и металлические. К ионным –NaH -& ,CaH 2 -& +H 2 O=Ca(OH) 2 ;NaH+H 2 O=NaOH+H 2 . Ковалентные –B 2 H 6 ,AlH 3 ,SiH 4 . Металлические –сd-элементами; состав переменный:MeH ≤1 ,MeH ≤2 – внедряются в пустоты между атомами.Проводит тепло, ток, твердые.ВОДА.сп3-гибридная сильнополярн.молекула под углом 104,5 ,диполи,наиб.распростран.растворитель.Вода реаг-ет при комнатной t:с активными мес галогенами (F, Cl) и межгалоидными соед-ямис солями, образов-ми слабой к-той и слабым осн-ем, вызывая их полный гидролиз; с ангидридами и галогенангидридами карбоновых и неорганич. кис-т; с активными металлорган-ми соед-ми; с карбидами, нитридами, фосфидами, силицидами, гидридами активных Mе; со многими солями, образуя гидраты;с боранами, силанами;с кетенами, недоокисью углерода;с фторидами благородных газов. Вода реаг-ет при нагревании: с Fe, Mgс углем, метаном;с некот алкилгалогенидами.Применение:водород -синтез аммиака,метанола,хлороводорода,ТВ.жиров,пламя водорода-для сварки,плавления,в металлургии для восстановления Ме из оксида,топливо для ракет,в фармации-вода,пероксид-антисепт,бактерицид,промывание,обесцвечивание волос,стерилизация.

Биол.роль: водород-7кг, Основная функция водорода– структурирование биологического пространства(вода и водородные связи) и формирование разнообразия орг молекул(входит в структуру белков, углеводов, жиров, ферментов) Благодаря водородным связям осуществляется

копирование молекулы ДНК. Вода принимает участие в громадном

количестве биохимических реакций, во всех физиологических и биологических

процессах, обеспечивает обмен веществ между организмом и внешней средой, между

клетками и внутри клеток. Вода является структурной основой клеток, необходима для

поддержания ими оптимального объема, она определяет пространственную структуру и

функции биомолекул.

error: