Гнилостные процессы. Какова роль гнилостных бактерий в природе и жизни человека Какой газ выделяется при гниении

Гнилостные процессы. Понятие об аэробном и анаэробном гниении. Возбудители. Роль гнилостных процессов в природе, в пищевой промышленности

Гниение - процесс глубокого разложения белковых веществ. Одним из конечных продуктов разложения белковых веществ является аммиак, поэтому процесс гниения называют аммонификацией.

Белки - высокомолекулярные соединения, поэтому вначале они подвергаются внеклеточному расщеплению протеолитическими ферментами микроорганизмов, которые являются экзоферментами.

Расщепление белков происходит ступенчато:

белки > пептоны > полипептиды > аминокислоты

Образовавшиеся аминокислоты диффундируют внутрь клеток и могут быть использованы как в конструктивном, так и в энергетическом обмене.

Расщепление аминокислот начинается путем их дезаминирования и декарбоксилирования. При дезаминировании аминокислот происходит отщепление аминогруппы с образованием аммиака, органических кислот (масляной, уксусной, пропионовой, окси- и кетокислот) и высокомолекулярных спиртов.

В дальнейшем образование конечных продуктов зависит от условий протекания процесса и от вида микроорганизма - возбудителя гниения.

Аэробное гниение. Протекает в присутствии кислорода воздуха. Конечными продуктами аэробного гниения являются, кроме аммиака, диоксид углерода, сероводород и меркаптаны (обладающие запахом тухлых яиц). Сероводород и меркаптаны образуются при разложении серосодержащих аминокислот (цистина, цистеина, метионина).

Анаэробное гниение. Протекает в анаэробных условиях. Конечными продуктами анаэробного гниения являются продукты декарбоксилирования аминокислот (отнятие карбоксильной группы) с образованием дурно пахнущих веществ: индола, акатола, фенола, крезола, диаминов (их производные являются трупными ядами и могут вызывать отравления).

Возбудители гнилостных процессов

Возбудителями аэробного гниения являются спорообразующие бактерии рода Bacillus: Bacillus mycoides (грушевидная бацилла); Bacillus megaterium (капустная бацилла); Bacillus mesentericus (картофельная палочка); Bacillus subtilis (сенная палочка), а также неспорообразующие палочки: Serrate marcencens (чудесная палочка); Proteus vulgaris (палочка протея); Escherichia coli (кишечная палочка) и другие микроорганизмы.

Возбудителями анаэробного гниения являются анаэробные споровые палочки рода Clostridium (протеолитические клостридии): Clostridium sporogenes, Clostridium subterminalis, Clostridium perfringens, Clostridium botulinum.

Практическое значение гнилостных процессов

Гнилостные микроорганизмы нередко наносят большой ущерб народному хозяйству, вызывая порчу богатых белками продуктов питания: мяса и мясопродуктов, яиц, молока, рыбы и рыбопродуктов и др.

В природе (в воде, почве) гнилостные бактерии активно разлагают отмершие животные и растительные ткани, минерализуют белковые вещества и тем самым играют важную роль в круговороте углерода и азота.

32. 32. Гниение - это процесс глубокого разложения белковых веществ микроорганизмами. Продукты разложения белков микроорганизмы используют для синтеза веществ клетки и в качестве энергетического материала.

Химизм. Гниение - сложный, многоступенчатый биохимический процесс, характер и конечный результат которого зависят от состава белков, условий процесса и видов вызывающих его микроорганизмов.

Белковые вещества не могут поступать непосредственно в клетки микроорганизмов, поэтому использовать белки могут только микробы, которые обладают ферментами - экзопротеазами.

Процесс распада простых белков начинается с их гидролиза. Первичными продуктами гидролиза являются пептиды. Они поступают в клетку и гидролизуются внутриклеточными протеазами до аминокислот.

Нуклеопротеиды под действием гнилостных микробов расщепляются на белковый комплекс и нуклеиновые кислоты. Затем белки разлагаются до аминокислот, а нуклеиновые кислоты распадаются на фосфорную кислоту, углеводы и смесь азотсодержащих оснований.

Аминокислоты используются микроорганизмами на синтез клетки или подвергаются ими дальнейшим изменениям, например дезаминированию. Дезаминирование различают: гидролитическое, окислительное и восстановительное.

Гидролитическое дезаминирование сопровождается образованием оксикислот и аммиака. Если при этом происходит декарбоксилирование аминокислоты, то образуется спирт, аммиак и углекислый газ.

При окислительном дезаминировании образуются кетокислоты и аммиак.

При восстановительном дезаминировании образуются карбоновые кислоты и аммиак. гниение химизм антисептик копчение

Среди продуктов разложения аминокислот в зависимости от строения их paдикала обнаруживаются различные органические кислоты и спирты. При разложении аминокислот жирного ряда могут накапливаться муравьиная, уксусная, пропионовая, масляная и другие кислоты; пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического промежуточными продуктами являются характерные продукты гниения: фенол, крезол, скатол, индол - вещества, обладающие очень неприятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные - меркаптаны. Меркаптаны обладают запахом тухлых яиц, который ощущается даже при ничтожно малых концентрациях.

Образующиеся при гидролизе белка диаминокислоты могут подвергаться декарбоксилированию без отщепления аммиака, в результате чего получаются диамины и С02.

Кадаверин, путресцин и другие амины, образующиеся при гниении, часто объединяют под общим названием птомаины (трупные яды). Некоторые производные птомаинов обладают ядовитыми свойствами.

Под воздействием аэробных микроорганизмов, азотистые и безазотистые органические соединения подвергаются окислению, так что могут быть полностью минерализированы. В этом случае конечными продуктами гниения являются аммиак, углекислый газ, вода, соли серной и фосфорной кислот. В анаэробных условиях не происходит полного окисления промежуточных продуктов распада аминокислот. В связи с этим кроме NH3 и С02 накапливаются разные, указанные выше органические соединения, в числе которых могут быть вещества, обладающие ядовитыми свойствами, и вещества, сообщающие гниющему материалу отвратительный запах.

Характеристика возбудителей. Наиболее активными возбудителями гнилостных процессов являются бактерии. Среди них есть спорообразующие и бесспоровые, аэробные и анаэробные. Мезофилы, холодоустойчивые и термостойкие, большинство чувствительных к кислотности среды и повышенному содержанию в ней поваренной соли. Наиболее распространенными гнилостными бактериями являются следующие.

Картофельная и сенная палочки - аэробные, подвижные, грамположительные, спорообразующие бактерии. Их споры термоустойчивы. Температурный оптимум в пределах 30-450С, максимум роста - при t0 55-600 С, при t0 ниже 50 не размножаются.

Бактерии рода Pseudomonas - аэробные, подвижные палочки с полярным жгутом, бесспоровые, грамотрицательные. Некоторые виды синтезируют пигменты, их называют флуоресцирующими псевдомонасы. Есть холодоустойчивые мин.t0 роста от -20 до -50 С. Они способны окислять углеводы с образованием кислот, выделять слизь. Развитие и биохимическая активность тормозит при рН ниже 5,5 и 5-6 % - ной концентрации NaCI в среде. Псевдомонасы широко распространены в природе, являются антагонистами ряда бактерий и мицелиальных грибов.

Proteus vulgaris - мелкие, грамотрицательные, бесспоровые палочки с резко выраженными гнилостными свойствами, факультативные анаэробы. Сбраживает углеводы с образованием газа и кислоты. В зависимости от условий жизни эти бактерии способны заметно менять форму и размеры. Хорошо развивается при t0 250 С и 370 С, прекращает размножаться при t0 около 5-100 С, но может сохранятся и в замороженных продуктах.

Особенностью его является энергичная подвижность. Это свойство лежит в основе метода выявления протея в пищевых продуктах и отделения его от сопутствующих бактерий. Некоторые виды выделяют токсические для человека вещества.

Clostridium putrificum - анаэробная подвижная, спорообразующая палочка. Относительно крупные споры ее располагаются ближе к концу клетки, которая при этом приобретает форму барабанной палочки. Споры довольно термоустойчивы. Углеводы не сбраживает, белки разлагает с образованием большого количества газа. Оптимальная t0 развития 37-430 С, минимальная - 50 С.

Clostridium sporogenes -анаэробная, подвижная, спороносная палочка. Споры термоустойчивы, в клетке они расположены центрально. У нее очень быстрое образование спор. Сбраживает углеводы с образованием кислот и газа, обладает липолитической способностью. При разложении белков обильно выделяется сероводород. Оптимальная t0 развития 35-400 С, минимальная - около 50 С.

Оба вида клостридий - возбудители порчи баночных консервов (рыбных, мясных и др.).

Гнилостные микроорганизмы наносят большой ущерб народному хозяйству, вызывая порчу ценнейших, богатых белками продуктов питания, например рыбы и рыбопродуктов, мяса и мясопродуктов, яиц, молока и др. Но эти же микроорганизмы играют большую положительную роль в круговороте азота в природе, минерализуя белковые вещества, попадающие в порчу, воду.

2. Влияние химических веществ на жизнеспособность микроорганизмов. Антисептические вещества. Требования к антисептикам используемым для консервирования пищевых продуктов. Копчение продуктов как способ их консервирования

Химические вещества.

Химический состав среды является одним из главных факторов развития микроорганизмов, он должен удовлетворять потребность их в питательных и энергетических веществах. Он определяет реакцию среды (рН) и ее окислительно-восстановительные условия. Среди химических веществ могут быть такие, которые задерживают развитие микроорганизмов и вызывают их гибель. Их называют антисептиками. Характер действия их разнообразен. Одни подавляют жизнедеятельность или задерживают размножение чувствительных к ним микробов, такое действие называют - бактериостатическим (в отношении бактерий) или фунгистатическим(в отношении мицелиальных грибов). Другие вещества вызывают гибель микроорганизмов, оказывая на них бактерицидное или фунгицидное действие. В малых дозах многие химические яды оказывают благоприятное действие, стимулируя размножение или биохимическую активность микробов. Момимо концентрации, эффективность действия химических вещепств на микроорганизмы зависит от природы вещества, биологических особенностей микроорганизма, продолжительности воздействия на него, температуры, состава и рН среды.

Чувствительность различных микроорганизмов к одному и тому же антисептику не одинакова. Споры устойчивее вегетативных клеток.

Из неорганических соединений наиболее сильнодействующими являются соли тяжелых металлов. Ионы некоторых тяжелых металлов, золота, меди, серебра, присутствуютв растворах в ничтожно малых концентрациях, не поддающихся непосредственному определению, оказывают не менее губительное действие на организмы. Это специфическое действие называется - олигодинамическим. Олигодинамические свойства серебра можно использовать для дезинфекции питьевой воды.

Бактерицидное действие проявляют многие окислители (хлор, йод, перекись водорода, марганцовокислый калий); минеральные кислоты (сернистая, борная, фтористо-водородная).

Воздействуют на микроорганизмы сероводород, окись углерода, сернистый газ.

Многие органические соединения ядовиты для микробов. В различной степени губительно воздействие фенолов, альдегидов, особенно формальдегида, спиртов, органических кислот (салициловая, уксусная, бензойная, сорбиновая). Бактерицидным действием обладают эфирные масла, смолы, дубильные вещества, многие красители (генцианвиолет, бриллиантовая зелень, фуксин).

Среди микроорганизмов имеются формы, устойчивые к действию клеточных и метаболических ядов, а некоторые обладают способностью даже использовать их. Например фенол, H2S, окись углерода.

Механизм действия антисептиков различен. Многие из них повреждают клеточные стенки, нарушают проницаемость цитоплазматической мембраны. Проникая в клетку, они вступают во взаимодействие с теми или иными компонентами ее, в результате чего значительно нарушаются обменные процессы. Соли тяжелых металлов, формалин, фенолы воздействуют на белки цитоплазмы, являются ядами для ферментов. Спирты, эфиры растворяют липиды клеточных мембран.

Многие антисептические вещества используют в медицине, сельском хозяйстве, промышленности и в быту как дезинфицирующие средства для борьбы с болезнетворными микробами. Широко применяют хлор и его соединения для дезинфекции питьевой воды, тары, оборудования, инвентаря.

Антисептические вещества используют для защиты от микробных поражений текстильных материалов, древесины, бумаги и изделий из нее и других материалов и объектов.

Применение антисептиков для консервирования продуктов ограничено и строго нормируется санитарным законодательством.

При выборе тех или иных химических веществ для обработки сырья, готовой продукции исходят из цели обработки назначения продукции.

Химические вещества применяются для обработки пищевых продуктов в малых дозах, поэтому они должны обладать высоким биоцидным или биостатическим действием на микроорганизмы, но одновременно должны быть безвредными для человека, не оказывать отрицательного влияния на продукты легко удаляться из них перед употреблением. Они не должны вступать в реакции с веществами продукта, тарой, материалами технологической аппаратуры. Кроме того, они должны быть экономически выгодными и доступными для использования.

В последние годы большой интерес вызывают новый класс антисептиков -полимерные дезинфицирующие средства, они более эффективны и менее опасны для человека.

Среди широкого спектра полимерных биоцидов выделяется группа соединений, содержащих в своем составе полигуанидины. Гуанидины - новые антисептики значительно эффективней четвертичных аммониевых соединений, ПАВ, производных фенола и хлорактивных дезинфицирующих препаратов. Например, «БИОР-1», «ПОЛИСЕПТ-ОП» и др.

Новым направлением в практике сокращения потерь пищевого сырья и продуктов, защиты от микроорганизмов является применение экологически безопасных полимерных пленок на основе латексов. Латексы - высокомолекулярные соединения селективной проницаемости по отношению к летучим соединениям, содержащие минимальные количество гигиенически нормируемых компонентов.

В стране разрешено использовать немногие химические консерванты в малых дозах и только для некоторых пищевых продуктов.

На принципе антисептики основано копчение мясных и рыбных продуктов. При копчении продукты пропитываются летучими антисептическими веществами дыма или аналогичными антисептиками коптильной жидкости, которую применяют вместо дыма. Наибольшим бактерицидным и фунгицидным действием обладает формальдегид, фенолы и органические кислоты.

При копчении на микрофлору продукта оказывает влияние и другие факторы. Так, при холодном копчении некоторое обезвоживание продукта (при сушке) и повышенное содержание соли, а при горячем копчении высокая температура.

В качестве заменителей дыма при копчении разработаны фенольные соединения бактерицидного действия. Фенольные компоненты содержат значительное число полярных группировок (гидроксильных, альдегидных, кетонных, кислотных, аминных). Они способны взаимодействовать с поверхностью колбасных изделий, в частности с белком, являющимся поверхностно-активным веществом, приобретающим в водных растворах свойства полиэлектролита. Фенольные компоненты, адсорбируясь на поверхности колбасных изделиях, сокращают диффузию воды и питательных веществ в клетки микроорганизмов и вывод продуктов обмена, что приводит их к гибели.

33 Влажность среды оказывает большое влияние на развитие микроорганизмов. В клетках большинства микроорганизмов содержится воды до 75-85%; с водой поступают питательные вещества в клетку и удаляются их нее продукты жизнедеятельности. Поэтому микроорганизмы могут развиваться только в субстратах, имеющих свободную воду (в капельно-жидком виде). Вода в связанной форме для них недоступна.

Рост, размножение микробов возможны только при наличии в субстрате определенного количества свободной воды. С понижением влажности субстрата в пределах, допускающих развитие микробов, интенсивность размножения их падает, а при удалении влаги из субстрата ниже определенного уровня - совсем прекращается

Потребность во влаге у различных микроорганизмов колеблется в широких пределах. Различают микроорганизмы: гидрофиты - влаголюбивые, мезофиты - средневлаголюбивые и ксерофиты - сухолюбивые. Бактерии в преобладающем большинстве - гидрофиты. Минимальная влажность среды, при которой еще возможно развитие бактерий, равна 20-30%.

В высушенном состоянии микроорганизмы, хотя и не проявляют заметно своей жизнедеятельности, но сохраняют жизнеспособность в течение более или менее длительного времени. Бесспоровые бактерии отличаются различной устойчивостью к высушиванию. Уксуснокислые и нитрифицирующие бактерии после высушивания быстро погибают, брюшнотифозные и туберкулезные бактерии, многие стафилококки и микрококки более стойки к высушиванию и могут сохраняться в сухом виде неделями и месяцами; высушенные молочнокислые бактерии сохраняют жизнеспособность в течение нескольких месяцев и даже лет.

Особенно легко переносят высушивание вегетативные клетки микробов, замороженные и высушенные в вакууме. Этот метод - леофильная сушка - в настоящее время применяется для длительного хранения культур микроорганизмов. Такие культуры годами остаются жизнеспособными, не изменяя своих свойств (3, стр. 61) .

1.1 Понятие о водной активности субстрата

Физические свойства субстратов, также как и их химические характеристики, имеют важное значение для производства качественного субстрата. Такие физические параметры субстрата как структура, влагоемкость, влажность, аэрация определяют состав и направление развития микрофлоры, а также рост мицелия культивируемого гриба.

Массу субстрата упрощенно можно рассматривать как трехфазную систему, состоящую из твердой, жидкой и газовой фазы

Твердая фаза - это сухое вещество субстрата, состоящее из частиц различного размера. Твердая фаза обеспечивает мицелий гриба питательными веществами. Важная характеристика твердой фазы - это структура. Структура определяется размерами частиц (дисперсность) и их прочностью.

Пустоты между частицами заполнены воздухом - это газовая фаза. Состав газовой фазы субстрата может сильно отличаться от состава наружного воздуха. Для развития мицелия как аэробного организма обязательно наличие в субстратном воздухе определенного количества кислорода, т.е. определенный уровень аэрации (4, стр. 78).

В увлажненном субстрате часть свободного пространства между частицами и внутри частиц заполнена водой - это водная фаза. Наличие достаточного количества жидкости в субстрате необходимо для обеспечения водой мицелия и плодовых тел грибов, состоящих на 90% из воды. Кроме того, характер питания грибов (осмотический) связан с выделением в наружную среду ферментов и поглощением всей поверхностью мицелия продуктов гидролиза, а этот процесс идет активно только в водной среде.

Твердая, газовая и водная фазы субстрата тесно связаны, и при приготовлении субстрата необходимо учитывать состояние каждой фазы. Например, в переувлажненном субстрате газовая фаза становится слишком маленькой в объеме (вытесняется водой) и уже не обеспечивает необходимого уровня газообмена или аэрации. Вследствие этого в субстрате формируются анаэробные условия неблагоприятные для развития мицелия.

Влажность субстрата сказывается на урожайности. Если воды в субстрате мало, то грибы появляются только в первую волну или вторая волна очень незначительна. Если воды слишком много, то снижается выход грибов на первой и второй волне плодоношения (табл.). Избыток воды в субстрате, также как переуплотнение субстрата, может способствовать образованию анаэробных зон, что снижает продуктивность культуры.

1.2 Сушка как способ консервирования пищевых продуктов

Технология сушки, как метод консервирования пищевых продуктов относится к ранней истории человеческого существования. Принцип сушки заключается в уменьшении микробиологической активности за счет удаления свободной влаги из пищевых продуктов. Сушка приводит к уменьшению веса, а часто и объема, что очень удобно для транспортировки и существенно снижает затраты. Высушенные пищевые продукты имеют почти неограниченный срок хранения в надлежащих условиях. Эти неоспоримые достоинства выводят сушку на передний план по сравнению с другими методами консервирования (5, стр. 89).

Область применения сушильного оборудования в пищевой промышленности весьма обширна. Это и оборудование для сушки овощей, оборудование для сушки фруктов, для сушки мяса и рыбы, зелени, грибов, ягод, дрожжей, зерна, круп, макарон, отрубей и комбикормов; это и оборудование для сушки сырья фармацевтической промышленности и лекарственных трав; это также и оборудование для сушки и жарки орехов, семечек (очищенных и неочищенных), кукурузных зерен, попкорна и других продуктов; это и оборудование для сушки и производства первых и вторых блюд (каш, пюре, лапши и др.) быстрого приготовления; это и оборудование для сушки и производства закусок к пиву (кальмаров, креветок и др. морепродуктов, мяса, сыра, а также снеков, чипсов, и др.). Это, наконец, и оборудование для сушки и производства специй, панировочных смесей, начинок и многого другого.

В настоящее время существует несколько широко используемых в промышленных условиях методов сушки, однако ни один из них не может в полной мере обеспечить экономичные и высококачественные пищевые продукты. Каждый метод имеет свои собственные ограничения, как на потребление энергии, так и на качество готового продукта. Длительность технологического процесса, высокие капиталовложения на приобретение оборудования, чувствительность многих пищевых продуктов и медицинских препаратов к высоким температурам являются ограничивающими условиями, а сохранность цвета, текстуры, питательной ценности пищевых продуктов, являются критическими факторами при выборе метода обезвоживания.

Наиболее часто используемыми методами сушки являются: сублимационная сушка, сушка распылением, конвективная сушка, туннельная сушка и барабанная сушка, сушка на солнце. Сушка солнцем и сушка горячим воздухом вызывают существенные потери цвета, что значительно ухудшает потребительские свойства продукта, также наблюдаются значительные потери витамина С и ухудшается способность продукта к регидратации. Барабанная сушка, разработанная для жидких продуктов, приводит к серьезным качественным потерям, в основном из-за использования воздуха, C). Сушка распылением, часто используемая нагретого до температуры (120є - 170 для жидких продуктов, с основными ограничениями в высокой стоимости процесса и требованием относительно высокого влагосодержания подачи, для гарантии C) вызывают распыления. Распыление и высокие температуры (150є - 300 значительные потери аромата и летучих компонентов. Механическое воздействие, которому подвергается сырье вследствие распыления, делает эту технологию неприемлемой для чувствительных продуктов. К тому же очень велика вероятность окисления распыленного материала.

Так как одним из основных показателей, характеризующих качество высушенного продукта, является сохранность витаминного состава, в частности витамина С и каротина, которые наиболее чувствительны к окислению и температурному воздействию, мы приведем сводную таблицу зависимости сохранности витаминного состава при различных методах сушки.

1.3 Гидрофиты, мезофиты, ксерофиты

По приуроченности к местообитаниям с разными условиями увлажнения и выработке соответствующих приспособлений среди наземных растений различают три основных экологических типа: гигрофиты, мезофиты и ксерофиты (7, стр. 90).

Ксерофиты - это растения сухих местообитаний, способные переносить значительный недостаток влаги - почвенную и атмосферную засуху. Они распространены, обильны и разнообразны в областях с жарким и сухим климатом. К этой группе принадлежат виды пустынь, сухих степей, саванн, колючих редколесий, сухих субтропиков. В более гумидных районах ксерофиты участвуют в растительном покрове лишь в наиболее прогреваемых и наименее увлажненных местообитаниях (например, на склонах южной экспозиции).

Неблагоприятный водный режим растений в сухих местообитаниях обусловлен, во-первых, ограниченным поступлением воды при ее недостатке в почве и, во-вторых, увеличением расхода влаги на транспирацию при большой сухости воздуха и высоких температурах. Следовательно, для преодоления недостатка влаги возможны разные пути: увеличение ее поглощения и сокращение расхода, кроме того, способность переносить большие потери воды. Все это используется ксерофитами при адаптации к сухости, но у разных растений в неодинаковой степени, в связи с чем некоторые авторы различают два основных способа преодоления ксерофитами засухи: возможность противостоять иссушению тканей, или активное регулирование водного баланса, и способность выносить сильное иссушение.

В зависимости от структурных черт и способов регулирования водного режима различают несколько разновидностей ксерофитов (по Генкелю П.А.): эуксерофиты, гемиксерофиты, пойкилоксерофиты.

К группе ксерофитов относят и суккуленты - растения с сочными листьями или стеблями. Различают листовые суккуленты (агавы, алоэ) и стеблевые, у которых листья редуцированы, а наземные части представлены мясистыми стеблями (кактусы, некоторые молочаи).

Ксерофиты с наиболее ярко выраженными ксероморфными чертами строения листьев имеют своеобразный внешний облик, за что получили название склерофитов. Облик типичного склерофита легко представить на примере чертополоха - Carduus crispus и пустынных полыней, ковылей, саксаулов.

Мезофиты - эта группа включает растения, произрастающие в средних условиях увлажнения. Сюда относятся растения лугов, травяного покрова лесов, лиственные древесные и кустарниковые породы из областей умеренно влажного климата, а также большинство культурных растений.

Мезофиты - группа весьма разнообразная не только по видовому составу, но и по различным экологическим оттенкам, обусловленным разным сочетанием факторов в природных местообитаниях. Они связаны переходами с другими экологическими типами растений по отношению к воде, так что четкую границу между ними провести очень трудно. Так, среди луговых мезофитов выделяются виды с повышенным влаголюбием, предпочитающие постоянно сырые или временно заливаемые участки (лисохвост луговой - Alopecurus pratensis, бекмания обыкновенная - Beckmannia eruciformis).

Их объединяют в переходную группу гигромезофитов наряду с некоторыми влаголюбивыми лесными травами, предпочитающими наиболее сырые леса, лесные овраги (недотрога - Impatiens nolitangere). С другой стороны в местообитаниях с периодическим или постоянным (небольшим) недостатком влаги много мезофитов с теми или иными ксероморфными признаками с повышенной физиологической устойчивостью к засухе. Эта группа переходная между мезофитами ксерофитами, - ксеромезофиты. Примером могут служить многие виды северных степей, сухих сосновых боров, песчаных местообитаний: клевер-белоголовка - Trifolium montanum, подмаренник желтый - Galium verum и другие.

Особое место среди мезофитов занимают степные и пустынные весенние эфемеры и эфемероиды. К этой группе принадлежат растения, ранней весной, покрывающие степи и пустыни разноцветным цветущим ковром (многолетники - тюльпаны, гусиные луки; однолетники - маки, вероники). Это виды с чрезвычайно краткой вегетацией и длительным периодом покоя, который однолетние эфемеры переживают в виде семян, а многолетние эфемероиды - в виде покоящихся луковиц, клубней, корневищ. Кроме весенних существуют и осенние эфемероиды, произрастающие в районах с климатическим ритмом средиземноморского типа. Сюда относятся виды родов Crocus, Scilla и другие.

По многим особенностям структуры и физиологии близки к ксерофитам растения, которые по тем или иным причинам испытывают недостаток влаги, сопряженный с действием низких температур. Иногда такие виды в качестве особого подразделения включают в группу ксерофитов, иногда выделяют в самостоятельные экологические типы - психрофиты и криофиты.

Психрофиты - растения влажных и холодных почв в холодных местообитаниях высокогорий и северных широт. Несмотря на достаточное увлажнение почвы, они часто испытывают недостаток влаги (или из-за физиологической сухости, вызванной низкими температурами, или в связи с преобладанием в почве недоступной влаги, как, например, на торфянистых почвах). Среди психрофитов есть травянистые растения (например, злаки северных лугов: белоус - Nardus strikta; высокогорные кавказские злаки: овсяница пестрая -Festuka varia), высокогорные, болотные и тундровые кустарники и кустарнички, как вечнозеленые (вереск - Calluna vulgaris), так и с опадающей листвой (карликовые ивы - Salix polaris, S. herbacea).К психрофитам относятся и хвойные древесные породы умеренных и северных широт.

Криофиты в экологическом отношении очень близки к психрофитам и связаны с ними переходными формами. Это растения сухих и холодных местообитаний - сухих участков тундр, скал, осыпей. Обычно они рассматриваются и характеризуются вместе с психрофитами, поскольку у них много сходных морфологических и физиологических черт. Но среди криофитов есть и весьма своеобразные формы - это растения-подушки высокогорных холодных пустынь.

Гидрофиты - это водные растения. По образу жизни и строению среди них можно выделить погруженные растения и растения с плавающими листьями. Погруженные растения подразделяют на укореняющиеся в донном грунте и взвешенные в толще воды. Из высших растений к первым принадлежат телорез - Stratiotes aloides, шильник водяной - Subularia aquatika. В эту же группу входят водоросли, прикрепленные к грунту. Из растений, взвешенных в толще воды, можно назвать роголистник погруженный--Ceratophyllum demersum, пузырчатку обыкновенную - Utrikularia vulgaris, а также многочисленные виды планктонных водорослей.

Растения с плавающими листьями используют частично водную, частично воздушную среду. Из них укореняются в грунте кувшинки из рода Nymphaea, кубышки из рода Nuphar, рдесты, орех водяной - Trapa natans.

Многие виды наряду с плавающими на поверхности воды листьями имеют и подводные. Плавают на поверхности воды, не укореняясь, ряски, водокрас.

К настоящим водным растениям очень близко примыкает и обычно вместе с ними рассматривается группа гелофитов или амфибий - земноводных растений. Это виды береговых и прибрежных местообитаний с избыточным или переменным увлажнением. Они могут расти как в воздушной среде, так и частично погруженными в воду, могут выносить и полное временное заливание. Как в природе нет резкой границы между водными и наземными местообитаниями для растений, так и группа гелофитов связана незаметными переходами, с одной стороны, с настоящими гидрофитами, с другой - с наземными гигрофитами и гигромезофитами. Примеры гелофитов - растений прибрежной полосы пресноводных водоемов и рек: стрелолист - Sagittaria sagittifolia, ежеголовка - Sparganium ramosum.

34 . Влияние концентрации среды.

Среда с повышенной концентрацией веществ оказывает губительное воздействие на микробы. При повышении концентрации соли до 10-20 % и сахара до 60-70 % многие микробы погибают. Действие высокой концентрации соли используют при посоле рыбы, мяса. Действие высокой концентрации сахара используют при приготовлении варенья, джема, повидла.

На жизнедеятельность микроорганизмов различное воздействие оказывает реакция среды. Большинство микробов развивается в нейтральной среде (рН = 7) или слабощелочной (рН = 8), а плесени и дрожжи - в слабокислой среде (рН = 3-6). Изменяя реакцию среды, можно влиять на развитие микроорганизмов. На этом основаны способы консервирования, маринования продуктов, в процессе которых подавляется развитие гнилостных бактерий.

Жизнедеятельность микроорганизмов протекает в средах, представляющих собой более или менее концентрированные растворы веществ. Одни из микроорганизмов обитают в пресной воде, где концентрация растворенных веществ незначительна и, следовательно, невелико осмотическое давление (обычно десятые доли атмосферы). Другие же микробы, наоборот, живут в условиях высоких концентраций веществ и значительного осмотического давления, достигающего иногда десятков и сотен атмосфер.

Большинство микроорганизмов может существовать в средах со сравнительно небольшой концентрацией растворенных веществ и обладает значительной чувствительностью к ее колебаниям.

Повышение концентрации веществ в среде и связанного с ней осмотического давления приводит к плазмолизу клетки, на­рушению обмена веществ между нею и средой и затем к гибели клетки. Однако некоторые микроорганизмы способны сохранять жизнеспособность в условиях повышенной концентрации продолжительное время.

Плесневые грибы переносят повышенные концентрации веществ (как и другие неблагоприятные факторы) легче, чем бактерии.

На губительном действии высоких концентраций веществ на микроорганизмы основано консервирование пищевых продуктов поваренной солью и сахаром.

Малоустойчивы к действию поваренной соли многие возбудители пищевых отравлений, например, паратифозные бактерии и бацилла ботулизма; их развитие приостанавливается при концентрации соли около 9%.

Поваренную соль используют для консервирования рыбы, мяса, овощей и других продуктов.

Микроорганизмы погибают также в растворах, содержащих 60-70% сахара. С помощью сахара консервируют ягоды, фрукты, молоко и др.

Некоторые микроорганизмы, живущие обычно в условиях невысокого осмотического давления, сравнительно хорошо раз­виваются и на засоленных или засахаренных продуктах. Встречаются и такие микробы, которые способны развиваться нор­мально только в условиях высокой концентрации поваренной соли (например, в тузлуке). Такие микробы называются галофилами. Нередко галофилы вызывают порчу соленых продовольственных товаров. Консервирующее действие сахара значительно слабее, чем поваренной соли, поэтому в практике консервирования сахаром продукты подвергают еще нагреванию в герметически закупоренной таре.


Похожая информация.


Материал из Судебно-медицинская энциклопедии

Гниение - сложный процесс разложения органических соеди­нений, прежде всего белков, под воздействием микробов. Начи­нается оно обычно на вторые - третьи сутки после смерти. Раз­витие гниения сопровождается образованием ряда веществ: биогенных диаминов (птомаинов), газов (серово­дород, метан, аммиак и др.), обладающих специфическим, не­приятным запахом. Интенсивность процесса гниения зависит от многих причин. Наиболее существенны температура окружающей среды и влажность. Гниение наступает быстро при температуре окружающей среды +30 - +40С. На воздухе оно развивается бы­стрее, чем в воде или почве. Еще более медленно загнивают тру­пы в гробах, особенно при их герметизации. Процесс гниения резко замедляется при температуре 0-1°С, при более низкой температуре он может совсем приостановиться. Значительно ус­коряются гнилостные процессы в случаях смерти от сепсиса (за­ражения крови) или при наличии других гнойных процессов.

Гниение обычно начинается в толстом кишечнике. Если труп находится в обычных комнатных условиях (+16 - +18°С), то на коже, в местах толстого кишечника ближе к передней брюшной стенке (подвздошные области - нижние боковые час­ти живота) на 2-й-3-й день появляются пятна зеленого цвета (трупная зелень), которые затем распространяются по всему телу и покрывают его целиком на 12-й-14-й день.

Образующиеся при гниении газы пропитывают подкожную клетчатку и раздувают ее (трупная эмфизема). Особенно раздутыми оказываются лицо, губы, мо­лочные железы, живот, мошонка, конечности. Тело при этом значительно увеличивается в объеме. Вследствие загнивания крови в сосудах венозная сеть начинает просвечивать через кожу в виде ветвистых фигур грязно-зеленого цвета, хорошо видимых при наружном осмотре трупа. Под действием газов язык может быть вытолкнут из полости рта. Под поверхностным слоем кожи образуются гнилостные пузыри, наполненные кровянистой жидкостью, которые со временем лопаются. Образующиеся при гниении в брюшной полости газы способны даже вытолкнуть плод из матки беременной женщины и одновременно вывернуть ее (посмертные роды).

В процессе гниения кожа, органы и ткани постепенно раз­мягчаются и превращаются в зловонную кашицеобразную массу, обнажаются кости. Со временем все мягкие ткани расплавляются и от трупа остается один скелет. В зависимости от условий захо­ронения (характер почвы и др.) полное разрушение мягких тка­ней и скелетирование трупа наступает примерно в течение 3-х- 4-х лет. На открытом воздухе этот процесс заканчивается значи­тельно быстрее (в летнее время - в течение нескольких месяцев). Кости скелета могут сохраняться десятки и сотни лет. У трупов, находящихся в земле, меняется цвет волос.

Ориентировочные сроки развития гнилостных изменений

1. Разрешение трупного окоченения Начало 3-х суток
2. Трупная зелень в подвздошных областях
А) летом на открытом воздухе 2-3 суток
Б) при комнатной температуре 3-5 суток
3. Трупная зелень всей кожи живота 3-5 суток
4. Трупная зелень всей кожи трупа (если нет мух) 8-12 суток
5. Гнилостная веноз­ная сеть 3-4 суток
6. Выраженная гнилостная эмфизема 2-я неделя
7. Появление гнилостных пузырей 2-я неделя
8. Гнилостная деструкция (если нет мух) 3 мес.

Скорость развития гнилостных процессов во многом определяется условиями среды. Каспером было предложено правило (см. Правило Каспера), согласно которому одного и того же состояния труп достигает в трех средах в определенной закономерности. Так, регистрируемые процессы гниения через неделю после наступления смерти при нахождении трупа на воздухе соответствуют двухнедельной давности трупа, находящегося в воде, и восьминедельной давности при нахождении трупа в земле.

При условии температуры трупа равной или незначительно превышающей температуры окружающей среды (на 1-1,5°С) решение вопроса определения продолжительности интервала времени, необходимого для появления признаков гниения при той или иной конкретной температуре тканей осуществляется по формуле:

τ = 512 / (T C - 16,5)

где τ – продолжительность гниения исследуемого объекта, час; T С – температура среды, °С.

В метаболизме микроорганизмов азотсодержащие вещества подвергаются разнообразным превращениям. По случайно поверхностному сходству разные виды порчи пищевых продуктов нередко называют гниением. Однако гниение – это процесс глубокого разложения белковых веществ микроорганизмами.

Способность разлагать в той или иной степени белковые вещества свойственна многим микроорганизмам. Некоторые из них разлагают непосредственно белки, другие могут воздействовать только на более или менее простые продукты распада белковой молекулы, например на пептиды, аминокислоты и др.

Продукты разложения белков микробы используют для синтеза веществ своего организма, а также в качестве энергетического материала.

Химизм разложения белковых веществ. Гниение – сложный, многоступенчатый биохимический процесс, характер и конечный результат которого зависят от состава разлагаемых белков, условий процесса и видов вызывающих его микроорганизмов.

Белковые вещества не могут непосредственно поступать в клетки микроорганизмов, поэтому использовать белки могут только те микроорганизмы, которые обладают протеолитиче-скими ферментами – экзопротеазами, выделяемыми клетками в окружающую среду.

Процесс распада белков начинается с их гидролиза. Первичными продуктами гидролиза являются пептоны и пептиды. Они расщепляются до аминокислот, которые являются конечными продуктами гидролиза.

Образующиеся в процессе распада белков различные аминокислоты используются микроорганизмами или подвергаются ими дальнейшим изменениям, например дезаминированию, в результате чего образуются аммиак" и разнообразные органические соединения. Процесс дезаминирования может происходить различными путями. Различают дезаминирование гидролитическое, окислительное и восстановительное.

Гидролитическое дезаминирование сопровождается образованием оксикислот и аммиака. Если при этом происходит и декарбоксилирование аминокислоты, то образуются спирт, аммиак и углекислый газ:

1 Ввиду того что аммиак всегда имеется в конечных продуктах распада белков, процесс гниения называют также аммонификацией белковых веществ.

При окислительном ДеЗаМйнированйи образуются кетокислоты и аммиак:

При восстановительном дезаминировании образуются карбоновые кислоты и аммиак:

Из приведенных уравнений видно, что среди продуктов разложения аминокислот в зависимости от строения их радикала (R) обнаруживаются различные органические кислоты и спирты. Так, при разложении аминокислот жирного ряда могут накапливаться муравьиная, уксусная, пропионовая, масляная и другие кислоты, пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического ряда промежуточными продуктами являются характерные продукты гниения: фенол, крезол, скатол, индол – вещества, обладающие очень неприятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные – меркаптаны (например, метилмеркаптан CH 3 SH). Меркаптаны обладают запахом тухлых яиц, который ощущается даже при ничтожно малых концентрациях.


Образующиеся при гидролизе белка диаминокислоты могут подвергаться декарбоксилированию без отщепления аммиака, в результате чего получаются диамины и углекислый газ. Например, лизин превращается в кадаверин:

Аналогично этому орнитин превращается в путресцин.

Кадаверин, путресцин и другие амины, образующиеся при гниении, часто объединяют под общим названием птомаины (трупные яды), некоторые из них обладают ядовитыми свойствами.

Дальнейшее превращение азотистых и безазотистых органических соединений, получающихся при распаде различных аминокислот, зависит от окружающих условий и состава микрофлоры. Аэробные микроорганизмы подвергают эти соединения окислению, так что они могут быть полностью минерализованы. В таком случае конечными продуктами гниения являются аммиак, углекислый газ, вода, сероводород, соли фосфорной кислоты. В анаэробных условиях не происходит полного окисления промежуточных продуктов распада аминокислот. В связи с этим кроме аммиака и углекислого газа накапливаются различные органические кислоты, спирты, амины и другие органические соединения, в числе которых могут быть вещества, обладающие ядовитыми свойствами, и вещества, придающие гниющему материалу отвратительный запах.

Возбудители гниения. Среди множества микроорганизмов,

способных в той или иной мере разлагать белки, особое значение имеют микроорганизмы, которые вызывают глубокий распад белков – собственно гниение. Такие микроорганизмы принято называть гнилостными. Из них наибольшее значение имеют бактерии. Гнилостные бактерии могут быть спорообра-зующими и бесспоровыми, аэробными и анаэробными. Многие из них мезофилы, но есть холодоустойчивые и термостойкие. Большинство чувствительны к кислотности среды.

Наиболее распространенными и активными возбудителями гнилостных процессов являются следующие.

Сенная и картофельная палочки 1 – аэробные, подвижные, грамположительные, спорообразующие бактерии

Рис. 32. Вас. subtills:

а – палочки и овальные споры; б – колония

(рис. 32). Споры их отличаются высокой термоустойчивостью. Температурный оптимум развития этих бактерий 35–45 °С, максимум роста – при температуре около 50–55 °С; при температуре ниже 5 °С они не размножаются. Помимо разложения белков, такие бактерии способны разлагать пектиновые вещества, полисахариды растительных тканей, сбраживать углеводы. Сенная и картофельная палочки широко распространены в природе и являются возбудителями порчи многих пищевых продуктов. Они вырабатывают антибиотические вещества, подавляющие рост многих болезнетворных и сапрофитных бактерий.

Бактерии рода Pseudomonas – аэробные подвижные палочки, с полярным жгутиком, не образующие спор, грамотри-цательные (рис. 33,а). Многие",виды холодоустойчивы, минимальная температура их роста от –2 до –5 °С, оптимум – около 20 °С. Многие псевдомонасы помимо протеолитической обладают липолитической активностью; они способны сбраживать углеводы с образованием кислот, выделять слизь. Развитие

1 В соответствии с Международным кодексом номенклатуры бактерий сенная и картофельная палочки рассматриваются как синонимы одного вида– Bacillus subtilis.

и биохимическая активность этих бактерий значительно тормозятся при рН ниже 5,5 и 5–6%-ной концентрации NaCl в среде. Псевдомонасы широко распространены в природе, являются антагонистами ряда бактерий и плесеней, так как образуют антибиотические вещества. Некоторые виды Psudomo-nas являются возбудителями болезней (бактериозов) культурных растений, плодов и овощей.

Протей (Proteus vulgaris)–мелкие грамотрицательные бесспоровые палочки с резко выраженными гнилостными свойствами. Белковые субстраты при развитии в них протея приобретают сильный гнилостный запах. В зависимости от усло-

Рис. 33.

а – Pseudomonas; б – Proteus vulgaris

вий жизни эти бактерии способны заметно менять свою форму и размеры (рис. 33, б).

Протей – факультативный анаэроб; сбраживает углеводы с образованием кислот и газов. Он хорошо развивается как при температуре 25 °С, так и при 37 °С, прекращая размножаться лишь при температуре около 5 °С, однако может сохраняться и в замороженных продуктах.

Характерной особенностью протея является его очень энер-гетичная подвижность. Это свойство лежит в основе метода ^выявления протея на пищевых продуктах и отделения его от сопутствующих бактерий. Некоторые виды протея выделяют токсические для человека вещества (см. с. 159).

Clostridium putrificum (рис. 34, а) – анаэробная подвижная, спорообразующая палочка. Относительно крупные споры ее располагаются ближе к концу клетки, которая при этом приобретает сходство с барабанной палочкой. Споры довольно термоустойчивы. Углеводы эта бактерия не сбраживает. Белки разлагают с образованием большого количества газов (NH 3 , H2S). Оптимальная температура развития 37– 43 °С, минимальная 5 °С.

Clostridium sporogertes (рис. 34, б) – анаэробная подвижная спороносная палочка. Споры термоустойчивы, в клетке они расположены ближе к ее концу. Характерным является очень быстрое (в течение первых суток роста) образование спор. Эта бактерия сбраживает углеводы с образованием кислот и газа, обладает липолитической способностью. При разложении белков обильно выделяется сероводород. Оптимальная температура развития 35–40 °С, минимальная – около 5 °С.

Оба вида клостридий известны как возбудители порчи баночных консервов (мясных, рыбных и др.).

Рис. 34.

а – Clostridium putrificum; б – Clostridium sporogenes

Практическое значение процессов гниения. Гнилостные микроорганизмы наносят нередко большой ущерб народному хозяйству, вызывая порчу ценнейших и богатых белками продуктов питания, например мяса и мясопродуктов, рыбы и рыбопродуктов, яиц, молока и др. Но эти микроорганизмы играют большую положительную роль в круговороте веществ в природе, минерализуя белковые вещества, попадающие в почву, воду.

Бактерии, несомненно, производят процесс гниения, брожения, сопровождающей еся выделением газов, и это мы находим у всех хищных рыб в желудке. Это может быть даже вредным для организма, раздражая кишечник. Тем не менее, если даже признать за бактериями известную роль в процессе предварительного разложения кормовых веществ в кишечнике рыб, их совершенно нельзя считать заместителями ферментов, а потому надо признать заменяющими пепсин, о чем мы скажем ниже.[ ...]

Гниение (метановое брожение) представляет собой процесс, протекающий без доступа кислорода воздуха, при котором органические вещества под действием различных симбиотических организмов, переходя через большое число промежуточных пР°ДУктов, разлагаются до метана и углекислоты. Последняя стадия разложения происходит под действием метановых бактерий.[ ...]

Бактерии живут повсеместно - в почве, воде, воздухе, в организмах растений, животных и человека. Многие бактерии по способу питания являются гетеротрофными организмами, т. е. используют готовые органические вещества. Часть из них, являясь сапрофитами, разрушает остатки мертвых растений и животных, участвует в разложении навоза, способствуют минерализации почвы. Бактериальные процессы спиртового, молочнокислого брожения используются человеком. Есть виды, которые могут жить в организме человека, не принося вреда. Так, например, в кишечнике человека обитает кишечная палочка. Отдельные виды бактерий, поселяясь на продуктах питания, вызывают их порчу. К сапро-фитам относятся бактерии гниения и брожения.[ ...]

В процессе гниения трупов растений и животных денитрифицирующие бактерии превращают нитраты в свободный азот (Ж)2 -> Ж)а -» N20 -> N2, который уходит в атмосферу, но азотфиксирую-щие бактерии снова конвертируют атмосферный азот в органические соединения, доступные для усвоения растениями.[ ...]

Низшие организмы. Гниение шлама прекращается при концентрации формальдегида 100 мг /л. Аэробные процессы разложения останавливаются при концентрации формальдегида в 135-175 мг/л . Предельно вредная концентрация для ■бактерий Escherichia coli составляет 1 мг /л, для водорослей Scenedesmus- 0,3-0,5 мг/л и для рачков 2 мг/л . Организмы, участвующие в метановом брожении, могут привыкнуть к формальдегиду и тогда переносить 15%-ную концентрацию формальдегида. Образовавшийся газ имеет эквимолекулярные части СН4 и С02 .[ ...]

Низшие организмы. Для бактерий Escherichia coli предельно вредная концентрация составляет 0,1 мг/л . Процессы загнивания шлама сильно задерживаются, если концентрация никеля в сыром шламе превышает предел 500-1000 мг/л . По данным Рудольфса (Rudolfs), концентрация 500 мг/л Ni не оказывает влияния на процесс гниения; концентрация 1000 мг/л Ni снижает гниение на 35%, концентрация 2000 мг/л - на 95%. Рост водорослей Scenedesmus задерживается, если концентрация превышает 0,9 мг/л Ni; предельно вредная концентрация для рачков составляет 6 мг/л .[ ...]

Кроме того, анаэробные бактерии Spirillum desulfuricans при гниении растительных элементов и в присутствии сернокислых солей выделяют сероводород, который в Черном море, за отсутствием циркуляции, скоплен в глубин«; от 150 саж. в таком количестве, что всякая жизнь там прекращается.[ ...]

С жизнедеятельностью анаэробных бактерий связаны процессы гниения компонентов растительных и микробных клеток с образованием также простых, но недоокисленных органических, а затем минеральных соединений (см. общую схему этих процессов на с. 126).[ ...]

Бактериальные болезни вызываются бактериями с высокой инфекционной способностью. В связи с переходом на механизированную уборку, вызывающую механические повреждения клубней, поражение картофеля бактериозами усилилось. В результате поражения этими болезнями наблюдается гибель растений в поле, загнивание посадочных клубней и нового урожая в поле, гниение их в период хранения. Потери урожая могут достигать 50%.[ ...]

Вследствие деятельности термофильных бактерий, температура навоза поднимается до 50-70°. Выделяющиеся при гниении углекислота и пары воды принимают участие в реакциях образования свинцовых белил. В результате процессов, протекающих в горшках, около 70-80% свинца превращаются в белила. После разгрузки горшков основной карбонат отделяют от металлического свинца. Эту операцию раньше производили вручную, а в настоящее время производят специальными машинами и на мокрых мельницах. От остатков свинца белила отделяют отмучиванием, после чего их отмывают от избытка уксуснокислого свинца, фильтруют и сушат. Свинцовые белила по указанному способу производили раньше не в зданиях, а в кучах, и поэтому этот способ называют также кучным, а белила называют иногда лаговыми (испорченное голландское слово loog - помещение для производства свинцовых белил).[ ...]

В обоих случаях, как при тлении, так и при гниении, образуется аммиак. Этот аммиак подвергается затем при помощи других аэробных бактерий окислению и переходит сперва в азотистую, а затем в азотную кислоты. Соответственно процессы эти называются аммонификацией и нитрификацией.[ ...]

Микрофлора почв весьма разнообразна. Здесь бактерии выполняют различные функции и подразделяются на следующие физиологические группы: бактерии гниения, нитрофи-цирующие, азотофиксирующие, серобактерии и др. Среди них есть аэробные и анаэробные формы.[ ...]

В животноводческих комплексах аммиак образуется от гниения органических соединений под действием уреазоактивных анаэробных бактерий. Активность названных бактерий возрастает при повышении температуры. Поэтому летом, как правило, концентрация аммиака значительно выше, чем зимой.[ ...]

Азот возвращается в атмосферу вновь с выделенными при гниении газами. Роль бактерий в цикле азота такова, что если будет уничтожено только 12 их видов, участвующих в круговороте азота, жизнь на Земле прекратится. Так считают американские ученые.[ ...]

РЕДУЦЕНТЫ - организмы, основной результат питания которых гниение или иное разложение сложных соединений до более простых. Прежде всего грибы и бактерии.[ ...]

Фенольные гликозиды клеток мхов, лишайников предотвращают их гниение, а после отмирания способствуют образованию торфа. Фенольные лишайниковые кислоты угнетают размножение многих бактерий и плесеней, поэтому многие лишайники практически стерильны и применялись в северных госпиталях в период Великой Отечественной войны как прокладочный материал при перевязке рай.[ ...]

Процессы минерализации совершаются при обязательном участии бактерий: в первом случае аэробных, развивающихся в присутствии воздуха (кислорода) и способствующих процессу окисления и образования кислот, а в соединении с калием и натрием - минеральных солей (углекислых, азотнокислых, сернокислых или фосфорнокислых, а также углекислоты СОг); во втором случае анаэробных, развивающихся при отсутствии воздуха и способствующих процессам гниения - расщепления сложных органических веществ, которые сопровождаются выделением дурно пахнущих газов, взрывоопасных (метана) и незначительных количеств углекислоты С02, переходом серы в сероводород Н/;-. азота - в аммиак ЫН3. Кроме того, создается среда, способствующая распространению заразных микробов.[ ...]

Выживают только те бактерии, которые вызывают гниение и не нуждаются в кислороде для разложения органических веществ, продукт их жизнедеятельности - выделяемый сероводород. Таким образом, гибнет не только озеро, но и смежные экосистемы в результате отравления сероводородом.[ ...]

Широкое распространение имеют инфекционные заболевания растений, вызываемые бактериями, грибами, 51 вирусами. Наиболее часто встречающиеся формы этих болезней: налеты на поверхности листьев, побегов (серая гниль и др.), скручивание листьев, гниение корней и стеблей.[ ...]

Мягкая гниль корневой шейки вызывается б акте рией Erwinia cartovora. Болезнь обнаруживается в период жаркой погоды. Бактерии живут в земле; проникают в растения при поражении корней в результате обработки почвы. Гниение корневой шейки сопровож дается неприятным запахом.[ ...]

При брожении происходит частичное выпадение хлопьев белковых веществ. Однако кислая реакция и наличие молочнокислых бактерий препятствуют развитию гнилостных бактерий, способствующих дальнейшему процессу распада веществ. Только после нейтрализации образовавшихся кислот сточные воды могут быть подвергнуты процессу гниения. Для сохранения тепла сточных вод необходимо предусмотреть отепленное помещение.[ ...]

БАКТЕРИАЛЬНЫЕ УДОБРЕНИЯ - удобрения, содержащие полезные для с.-х. растений почвенные микроорганизмы (напр., нитрагин). БАКТЕРИИ [гр. bakleria - палочка] - группа микроскопических одноклеточных микроорганизмов, обладающих клеточной стенкой, но не имеющих оформленного ядра, лишенных хлорофилла и пластид, размножающихся делением. Б. широко распространены в природе (вызывают гниение, брожение и т. д.), участвуют в биоге-охимическом круговороте всех биологически важных химических элементов, выполняя функцию редуцентов. Многие ключевые процессы круговорота осуществляются только с помощью Б. (напр., нитрификация, денитрификация, азотфиксация, окисление и восстановление соединений серы и др.). Б. - возбудители многих болезней человека, животных и растений (тиф, холера, туберкулез). БАКТЕРИОЛОГИЧЕСКОЕ ЗАГРЯЗНЕНИЕ - см. в ст. Загрязнение биологическое, а также Коли-индекс и Микробное число.[ ...]

Биологические пруды (осветлители) используются для слабо концентрированных сточных вод, содержащих легко разлагаемые бактериями органические вещества. Они применяются также в качестве вторичных осветлителей для химически обработанных или неполностью биологически очищенных сточных вод. Размеры их должны быть подобраны таким образом, чтобы сточные воды в них ни в какое время не подвергались процессу гниения. Эти размеры рассчитываются на основании биохимической потребности кислорода, покрытие которого должно происходить за счет воздуха, а иногда и за счет разбавления богатыми кислородом водами. Если эти естественные пополнения кислорода оказываются недостаточными, то его недостаток устраняют добавкой нитратов. В основу расчета можно класть эквивалент населенности, причем на каждого жителя нужно считать 20 м? площади пруда. Для того чтобы ассимиляция под влиянием света могла полностью протекать, необходимо, чтобы глубина пруда не превышала 1,20 ж.[ ...]

В практике большое значение имеет "биохимический распад белков. Процесс распада белков или их производных под влиянием гнилостных бактерий называется гниением. Процессы гниения могут происходить аэробно и анаэробно. Гниение сопровождается выделением резко пахнущих веществ: аммиака, сероводорода, скатола, индола, меркаптанов и др.[ ...]

Минерализация - процесс разрушения (распада) органических веществ, т. е. переход их в минеральные, протекает в природе под воздействием бактерий и микроорганизмов, носящих название аэробных. Если кислорода в водотоке или почве достаточно много, то отдельные составные элементы органических веществ - азот, углерод, сера, фосфор - окисляются до минеральных солей азотной, угольной, серной и фосфорной кислоты. При недостаточном количестве или отсутствии кислорода происходит медленное разложение (гниение) органических веществ. В итоге образуются метан СШ, сероводород ЬЬЭ, аммиак К]Н3. Процесс протекает под воздействием бактерий, носящих название анаэробных.[ ...]

Цианэтилированный хлопок обладает высокой гнило- и плесе-нестойкостью. При выдерживании в течение очень длительного времени в почве, зараженной бактериями, вызывающими гниение целлюлозы, этот продукт полностью сохраняет прочность (а в некоторых случаях наблюдалось даже некоторое ее повышение). Циан-этилпрованные хлопок и манильская пенька также не подвергаются гниению, длительно находясь в воде . Гнилостойкость возрастает с увеличением содержания азота и становится абсолютной, когда оно достигает 2,8-3,5%. Однако присутствие даже незначительных количеств карбоксильных групп (образующихся в результате омыления цианэтильных групп) отрицательно сказывается на устойчивости целлюлозных материалов к действию гнилостных бактерий. Поэтому очень важно проводить цианэтилирование в наиболее мягких условиях. Следует также уменьшать интенсивность щелочных обработок или совсем избегать их при промывке, отбелке и крашении цианэтилированного хлопка .[ ...]

При заболевании растений до цветения клубни, как правило, не образуются. При более позднем заболевании клубни образуются, но больные черной ножкой, гниение их при хранении продолжается. Они создают очаг инфекции в хранилище. В почве бактерии черной ножки долго не сохраняются.[ ...]

При разбавлении в 1: 100 000 сулема препятствует гниению. Прорастанию спор сибирской язвы препятствует концентрация 3 мг/л. Сулема наносит вред спирогирам даже в разбавлении 1: 100 000 000 . Предельно вредная концентрация для бактерий Escherichia coli составляет 2 мг/л, для водорослей See-nedesmus и для рачков Daphnia magna - 0,03 мг/л .[ ...]

Газы метан, водород, сероводород и другие, скапливаясь в сооружениях, построенных на закрытых свалках, образовывают взрывоопасные смеси, фильтрат содержит продукты гниения мусора. Например, на свалке Ростова-на-Дону степень бактериального загрязнения грунтовых вод превышала средние значения для городской канализации: в 1 мл воды содержалось до 1,5 млн. бактерий, в том числе 34 000 кишечных.[ ...]

При сбросе в водоемы сточных вод некоторых химических производств, загрязненных сероводородом, наблюдается обильное развитие нитчатых серобактерий, относящихся к родам ТЫоШпх. и Ведд1а1:оа- Эти бактерии образуют обрастания на дне й у берегов водоема. Загрязнение водоемов сточными водами, содержащими закисные соли железа, сопровождается развитием обрастаний нитчатых железобактерий - Ьер1оШпх, СЫатусЫЬпх и С1ас1оШпх. Отмирая, такие обрастания осаждаются в более глубоких котлованах и, подвергаясь процессам гниения, вызывают вспышки вторичного загрязнения.[ ...]

Но значительная часть мертвого органического вещества, в том числе и собственно детрита, например остатки растительности - древесина, не может быть употреблена в пищу детритофагами, а подвергается гниению и разлагается в процессе питания грибов и бактерий.[ ...]

Кроме повышения эффективности работы хлопкоуборочных машин, предуборочное удаление листьев способствует более раннему созреванию урожая (на 15- 20 дней). Под действием дефолиантов также ограничивается распространение болезнетворных бактерий, грибов, насекомых, которые нередко вызывают гниение хлопка-сырца на облиственных растениях в позднеосенний период.[ ...]

Мы видели выше, какие громадные массы разных органических веществ вносятся в водоем с суши, но наверное еще большее количество их происходит от водных растений и животных. Посмотрим же, каким процессам подвергаются они, чтобы вновь войти в круговорот жизни. Гниение, обусловливаемое микробами, начинается с растворения белка и образования альбумозов и пептонов, быстро разлагающихся и в конце концов дающих аммиак, углекислоту, водород, метан, сероводород, воду и прочее. Таким образом, весь процесс происходит помощью жизнедеятельности трех групп.[ ...]

Сирп; указывает, что при спуске в водоем предварительно неочищенных стоков очень интенсивно произрастают 8рЬЬего1у1и51 ап8. Мак Гаухей показал, что сброс 260 м3 стоков в 1 сек. в реку Роанакс в Виргинии (США) вызвал в ней помутнение, образование сульфидного запаха, желтого ила на дне реки, возникновение процессов гниения, значительное повышение БПК5 и углекислоты, уменьшение количества бактерий в реке и исчезновение рыбы.[ ...]

Полисапробные организмы характерны для очень загрязненных вод, в которых содержится много белковых веществ, сероводорода, метана и углекислоты. Растворенный кислород в таких водах отсутствует. В этой группе организмов отдельных видов немного, но каждый вид развивается очень интенсивно. В основном группа включает бактерии (миллионы в 1 мл воды), инфузории, бесцветные жгутиковые, серные бактерии. В донных отложениях много органического детрита; водные цветковые растения отсутствуют. Для полисапробной зоны характерны восстановительные процессы гниения и распада.[ ...]

Чрезмерно развитая растительность препятствует правильной эксплуатации прудов, способствует ухудшению гидрохимического и газового режимов, особенно в ночные часы, когда кислород потребляется всеми водными организмами на дыхание и создается его дефицит. При разложении отмирающей растительности выделяются токсичные продукты гниения (аммиак, сероводород и др.), а ее остатки являются субстратом для сохранения и размножения сапрофитных и патогенных грибов, бактерий.[ ...]

Различают три вида пыли: минеральную (неорганическую), органическую и космическую. Выветривание и разрушение горных пород, извержение вулканов, степные и торфяные пожары, испарения с поверхности морей служат причиной образования минеральной пыли. Органическая пыль в воздухе представлена аэропланктоном - организмами, живущими в атмосфере (бактерии, споры грибов, пыльца растений и др.), и продуктами гниения, брожения и разложения растений и животных. Космическая пыль образуется из остатков сгоревших метеоритов при их прохождении в атмосфере.[ ...]

Но если в водоем попадает слишком большое количество биогенных элементов (например, систематически сбрасываются стоки завода минеральных удобрений), происходит нарушение цикла. Начинается бурный рост водорослей, толщина их слоя резко увеличивается, снижается поступление света в нижние слои водоема, замедляются процессы фотосинтеза. Одновременно усиливается гниение большой массы отмерших клеток. На их разложение уходит весь растворенный в воде кислород и тогда погибают не только животные, но и разлагающие детрит бактерии. Цепь разрывается. Если вредные для водоема стоки не прекратить, то природный механизм самоочищения придет в упадок.[ ...]

С. возможно и в популяциях видов с вторичной стратегией поведения, однако он выражен в меньшей степени и сочетается с миниатюризацией (при высокой плотности популяции часть особей выпадает, а оставшиеся имеют меньший размер). САМООЧИЩЕНИЕ ПРИРОДНЫХ ВОД (С.п.в.) - вариант биотической трансформации среды, процесс очищения воды от загрязняющих веществ путем их разложения и осаждения. С.п.в. происходит как в анаэробной среде (гниение), так и в аэробной. В последнем случае С.п.в. происходит тем более активно, чем выше содержание в воде кислорода. В С.п.в. кроме бактерий принимают участие также грибы, водоросли, животные. В проточной воде С.п.в. происходит активней, чем в стоячей. При поступлении в водоемы большого количества сточных вод (это имеет место в крупных городах РФ) способность к С.п.в. водоемов оказывается недостаточной. Необходимы специальные очистные сооружения и уменьшение сбросов за счет использования малоотходных технологий. САНИТАРНО-ЗАЩИТНАЯ ЗОНА -территория, засаженная лесом и отделяющая предприятия, загрязняющие атмосферу, от жилой части населенного пункта.[ ...]

Таким образом, антибиотики обладают всеми свойствами, которые необходимы для лечебных препаратов, применяющихся в растениеводстве. В литературе имеются многочисленные сообщения об успешном использовании антибиотиков в борьбе с различными заболеваниями растений. При этом показапо, что антибиотики не только предохраняют растение от поражений, но и оказывают лечебное действие при наличии различных инфекций (фитопатогенные грибы, бактерии и актиномицеты). Антибиотические препараты испытаны при лечении заболеваний фруктовых деревьев, хлопчатника, зерновых и овощных культур, декоративных растений как в лабораториях, так и в производственных условиях. Например, хорошие результаты получены при использовании аурео-фунгина в борьбе с грибковыми заболеваниями семян и ложной мучнистой росой. Предпосевная обработка семян хлопчатника антибиотиком позволила в 5-6 раз снизить заболевания хлопчатника гоммозом и вертициллезным увяданием. Перспективно использование антибиотиков в окулировке растений. Черенки, обработанные антибиотиком, практически стерильны, и растения после прививки не заболевают, в то время как контрольные, не обработанные антибиотиком, часто погибают от внесения инфекции. Очень эффективно применение антибиотиков при заболеваниях растений бактериального происхождения: бактериоз яблони и груш, гниль грецкого ореха, бактериальная пятнистость томатов и перца, мокрая гниль картофеля, бактериальная пятнистость бобовых, бактериоз табака, гниение посадок картофеля, бурая гниль кочерыжек капусты, бактериальная пятнистость хризантем и т. д.[ ...]

В процессе эксплуатации целлюлозные материалы подвержены действию целлюлолитических ферментов. При действии этих ферментов достаточно легко разрушаются хлопок, древесина, бумага, целлофановая пленка, вискозный шелк; ацетатные волокна и пленка устойчивы к деструкции благодаря высокой степени замещения гидроксильных групп в макромолекуле этого эфира целлюлозы. Модификация целлюлозы, направленная на улучшение ее основных свойств, часто повышает и устойчивость к гниению. Так, обработка различными реагентами с целью придания целлюлозным материалам несминаемости одновременно вызывает устойчивость материала к гниению. Иногда возникают неожиданные проблемы. Например, создание бумаги, обладающей повышенной прочностью в мокром состоянии, привело к тому, что использованная бумага не разлагалась в обычных очистных сооружениях. Новые водорастворимые краски содержат в качестве загустителя карбоксиметил-целлюлозу или метилцеллюлозу. Поэтому достаточно незначительного роста гриба или бактерий для того, чтобы вызвать деструкцию этих загустителей, в результате чего краски разжижаются и: разрушаются.[ ...]

В начале нашего века возникла микробиологическая теория старения, творцом которой был И. И. Мечников, который различал физиологическую старость и патологическую. Он считал, что старость человека является патологической, т. е. преждевременной. Основу представлений И. И. Мечникова составляло учение об ортобиозе (Orthos - правильный, bios - жизнь), в соответствии с которым основной причиной старения является повреждение нервных клеток продуктами интоксикации, образующимися в результате гниения в толстом кишечнике. Развивая учение о нормальном образе жизни (соблюдение правил гигиены, регулярный труд, воздержание от вредных привычек), И. И. Мечников предлагал также способ подавления гнилостных бактерий кишечника путем употребления кисломолочных продуктов.[ ...]

Начальная стадия порчи рыбы - автолиз мышц, выражающийся в размягчении тканей под влиянием ферментов, а далее - распад белков до аминокислот. Под воздействием микрофлоры может произойти и дальнейший их распад, вплоть до окончательной порчи мяса рыбы и появления аммиака и сероводорода. Ферментов, вызывающих автолиз, в рыбе в среднем значительно больше, чем в тканях теплокровных животных. Так, в теплое время года в непотрошеной салаке быстрота, с которой наступает автолиз, может показаться ошеломляющей. Поскольку деятельность бактерий, находящихся в рыбе, оживляется одновременно с изменениями, наступившими под влиянием ферментов, то эти изменения надо по возможности отдалить. Правда, в процессе автолиза в рыбе еще не появляются плохо пахнущие и неприятные на вкус вещества, как это наблюдается при гниении, вызванном бактериями. Но с точки зрения хранения рыбы и автолиз, бесспорно, - негативное явление.[ ...]

В хорошо организованной компостной куче происходит полное разложение органических веществ. При этом температура внутри компостной кучи достигает 70 °С. В процессе перепревания содержимое компостной кучи пронизывается большим количеством грибковых нитей. Высокие температуры и вырабатываемые грибковыми образованиями антибиотики убивают болезнетворных микробов, находящихся в куче. Компостные кучи должны хорошо проветриваться. Содержимое кучи следует время от времени перелопачивать. При этом верхние слои попадут внутрь кучи и, таким образом, все содержимое кучи хорошо и равномерно прогреется. При обеспечении доступа воздуха внутрь кучи не возникает процессов гниения, и бактерии, грибки и другие организмы разлагают отбросы. Отверстия для доступа воздуха внутрь компостной кучи легко сделать, втыкая в середину кучи деревянные колья. Такая вентиляция наряду с происходящим при перелопачивании проветриванием способствует надлежащему перепреванию содержимого кучи.

Гниение - это процесс глубокого разложения белковых веществ микроорганизмами. Продукты разложения белков микроорганизмы используют для синтеза веществ клетки и в качестве энергетического материала.

Гниение - сложный, многоступенчатый биохимический процесс, характер и конечный результат которого зависят от состава белков, условий процесса и видов вызывающих его микроорганизмов.

Белковые вещества не могут поступать непосредственно в клетки микроорганизмов, поэтому использовать белки могут только микробы, которые обладают ферментами - экзопротеазами.

Процесс распада простых белков начинается с их гидролиза. Первичными продуктами гидролиза являются пептиды. Они поступают в клетку и гидролизуются внутриклеточными протеазами до аминокислот.

Нуклеопротеиды под действием гнилостных микробов расщепляются на белковый комплекс и нуклеиновые кислоты. Затем белки разлагаются до аминокислот, а нуклеиновые кислоты распадаются на фосфорную кислоту, углеводы и смесь азотсодержащих оснований.

Аминокислоты используются микроорганизмами на синтез клетки или подвергаются ими дальнейшим изменениям, например дезаминированию. Дезаминирование различают: гидролитическое, окислительное и восстановительное.

Гидролитическое дезаминирование сопровождается образованием оксикислот и аммиака. Если при этом происходит декарбоксилирование аминокислоты, то образуется спирт, аммиак и углекислый газ.

При окислительном дезаминировании образуются кетокислоты и аммиак.

При восстановительном дезаминировании образуются карбоновые кислоты и аммиак.

Среди продуктов разложения аминокислот в зависимости от строения их paдикала обнаруживаются различные органические кислоты и спирты. При разложении аминокислот жирного ряда могут накапливаться муравьиная, уксусная, пропионовая, масляная и другие кислоты; пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического промежуточными продуктами являются характерные продукты гниения: фенол, крезол, скатол, индол - вещества, обладающие очень неприятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные - меркаптаны. Меркаптаны обладают запахом тухлых яиц, который ощущается даже при ничтожно малых концентрациях.

Образующиеся при гидролизе белка диаминокислоты могут подвергаться декарбоксилированию без отщепления аммиака, в результате чего получаются диамины и С02.

Кадаверин, путресцин и другие амины, образующиеся при гниении, часто объединяют под общим названием птомаины (трупные яды). Некоторые производные птомаинов обладают ядовитыми свойствами.

Под воздействием аэробных микроорганизмов, азотистые и безазотистые органические соединения подвергаются окислению, так что могут быть полностью минерализированы. В этом случае конечными продуктами гниения являются аммиак, углекислый газ, вода, соли серной и фосфорной кислот. В анаэробных условиях не происходит полного окисления промежуточных продуктов распада аминокислот. В связи с этим кроме NH3 и С02 накапливаются разные, указанные выше органические соединения, в числе которых могут быть вещества, обладающие ядовитыми свойствами, и вещества, сообщающие гниющему материалу отвратительный запах.

Наиболее активными возбудителями гнилостных процессов являются бактерии. Среди них есть спорообразующие и бесспоровые, аэробные и анаэробные. Мезофилы, холодоустойчивые и термостойкие, большинство чувствительных к кислотности среды и повышенному содержанию в ней поваренной соли. Наиболее распространенными гнилостными бактериями являются следующие.

Картофельная и сенная палочки - аэробные, подвижные, грамположительные, спорообразующие бактерии. Их споры термоустойчивы. Температурный оптимум в пределах 30-450С, максимум роста - при t0 55-600 С, при t0 ниже 50 не размножаются.

Бактерии рода Pseudomonas - аэробные, подвижные палочки с полярным жгутом, бесспоровые, грамотрицательные. Некоторые виды синтезируют пигменты, их называют флуоресцирующими псевдомонасы. Есть холодоустойчивые мин.t0 роста от -20 до -50 С. Они способны окислять углеводы с образованием кислот, выделять слизь. Развитие и биохимическая активность тормозит при рН ниже 5,5 и 5-6 % - ной к концентрации NaCI в среде. Псевдомонасы широко распространены в природе, являются антагонистами ряда бактерий и мицелиальных грибов.

Proteus vulgaris - мелкие, грамотрицательные, бесспоровые палочки с резко выраженными гнилостными свойствами, факультативные анаэробы. Сбраживает углеводы с образованием газа и кислоты. В зависимости от условий жизни эти бактерии способны заметно менять форму и размеры. Хорошо развивается при t0 250 С и 370 С, прекращает размножаться при t0 около 5-100 С, но может сохранятся и в замороженных продуктах.

Особенностью его является энергичная подвижность. Это свойство лежит в основе метода выявления протея в пищевых продуктах и отделения его от сопутствующих бактерий. Некоторые виды выделяют токсические для человека вещества.

Clostridium sporogenes -анаэробная, подвижная, спороносная палочка. Споры термоустойчивы, в клетке они расположены центрально. У нее очень быстрое образование спор. Сбраживает углеводы с образованием кислот и газа, обладает липолитической способностью. При разложении белков обильно выделяется сероводород. Оптимальная t0 развития 35-400 С, минимальная - около 50 С.

Гнилостные микроорганизмы наносят большой ущерб народному хозяйству, вызывая порчу ценнейших, богатых белками продуктов питания, например рыбы и рыбопродуктов, мяса и мясопродуктов, яиц, молока. Но эти же микроорганизмы играют большую положительную роль в круговороте азота в природе, минерализуя белковые вещества, попадающие в порчу, воду.

error: