Дисперсионный анализ. Многофакторный дисперсионный анализ Дисперсионный анализ является

Применение статистики в этой заметке будет показано на сквозном примере. Предположим, что вы - руководитель производства в компании Perfect Parachute («Идеальный парашют»). Парашюты изготавливаются из синтетических волокон, поставляемых четырьмя разными поставщиками. Одной из основных характеристик парашюта является его прочность. Вам необходимо убедиться, что все поставляемые волокна обладают одинаковой прочностью. Чтобы ответить на этот вопрос, следует разработать схему эксперимента, в ходе которого измеряется прочность парашютов, сотканных из синтетических волокон разных поставщиков. Информация, полученная в ходе этого эксперимента, позволит определить, какой поставщик обеспечивают наибольшую прочность парашютов.

Многие приложения связаны с экспериментами, в которых рассматривается несколько групп или уровней одного фактора. Некоторые факторы, например, температура обжига керамики, могут иметь несколько числовых уровней (т.е. 300°, 350°, 400° и 450°). Другие факторы, например, местоположение товаров в супермаркете, могут иметь категориальные уровни (например, первый поставщик, второй поставщик, третий поставщик, четвертый поставщик). Однофакторные эксперименты, в ходе которых экспериментальные единицы случайным образом распределяются по группам или уровням фактора, называются полностью рандомизированными.

Использование F -критерия для оценки разностей между несколькими математическими ожиданиями

Если числовые измерения фактора в группах являются непрерывными и выполняются некоторые дополнительные условия, для сравнения математических ожиданий нескольких групп применяется дисперсионный анализ (ANOVA - An alysis o f Va riance). Дисперсионный анализ, использующий полностью рандомизированные планы, называется однофакторной процедурой ANOVA. В некотором смысле термин дисперсионный анализ является неточным, поскольку при этом анализе сравниваются разности между математическими ожиданиями групп, а не между дисперсиями. Однако сравнение математических ожиданий осуществляется именно на основе анализа вариации данных. В процедуре ANOVA полная вариация результатов измерений подразделяется на межгрупповую и внутригрупповую (рис. 1). Внутригрупповая вариация объясняется ошибкой эксперимента, а межгрупповая - эффектами условий эксперимента. Символ с обозначает количество групп.

Рис. 1. Разделение вариации в полностью рандомизированном эксперименте

Скачать заметку в формате или , примеры в формате

Предположим, что с групп извлечено из независимых генеральных совокупностей, имеющих нормальное распределение и одинаковую дисперсию. Нулевая гипотеза заключается в том, что математические ожидания генеральных совокупностей одинаковы: Н 0: μ 1 = μ 2 = … = μ с . Альтернативная гипотеза гласит, что не все математические ожидания одинаковы: Н 1 : не все μ j одинаковы j = 1, 2, …, с).

На рис. 2 представлена истинная нулевая гипотеза о математических ожиданиях пяти сравниваемых групп при условии, что генеральные совокупности имеют нормальное распределение и одинаковую дисперсию. Пять генеральных совокупностей, связанных с разными уровнями фактора, идентичны. Следовательно, они накладываются одна на другую, имея одинаковые математическое ожидание, вариацию и форму.

Рис. 2. Пять генеральных совокупностей имеют одинаковое математическое ожидание: μ 1 = μ 2 = μ 3 = μ 4 = μ 5

С другой стороны, предположим, что на самом деле нулевая гипотеза является ложной, причем четвертый уровень имеет наибольшее математическое ожидание, первый уровень - чуть меньшее математическое ожидание, а остальные уровни - одинаковые и еще меньшие математические ожидания (рис. 3). Обратите внимание на то, что за исключением величины математических ожиданий все пять генеральных совокупностей идентичны (т.е. имеют одинаковую изменчивость и форму).

Рис. 3. Наблюдается эффект условий эксперимента: μ 4 > μ 1 > μ 2 = μ 3 = μ 5

При проверке гипотезы о равенстве математических ожиданий нескольких генеральных совокупностей полная вариация разделяется на две части: межгрупповую вариацию, обусловленную разностями между группами, и внутригрупповую, обусловленную разностями между элементами, принадлежащими одной группе. Полная вариация выражается полной суммой квадратов (SST – sum of squares total). Поскольку нулевая гипотеза заключается в том, что математические ожидания всех с групп равны между собой, полная вариация равна сумме квадратов разностей между отдельными наблюдениями и общим средним (среднее средних) , вычисленным по всем выборкам. Полная вариация:

где - общее среднее, X ij - i -e наблюдение в j -й группе или уровне, n j - количество наблюдений в j -й группе, n - общее количество наблюдений во всех группах (т.е. n = n 1 + n 2 + … + n c ), с - количество изучаемых групп или уровней.

Межгрупповая вариация , называемая обычно межгрупповой суммой квадратов (SSA – sum of squares among groups), равна сумме квадратов разностей между выборочным средним каждой группы j и общим средним , умноженных на объем соответствующей группы n j :

где с - количество изучаемых групп или уровней, n j - количество наблюдений в j -й группе, j - среднее значение j -й группы, - общее среднее.

Внутригрупповая вариация , называемая обычно внутригрупповой суммой квадратов (SSW – sum of squares withing groups), равна сумме квадратов разностей между элементами каждой группы и выборочным средним этой группы j :

где Х ij - i -й элемент j -й группы, j - среднее значение j -й группы.

Поскольку сравнению подвергаются с уровней фактора, межгрупповая сумма квадратов имеет с – 1 степеней свободы. Каждый из с уровней обладает n j – 1 степенями свободы, поэтому внутригрупповая сумма квадратов имеет n – с степеней свободы, и

Кроме того, общая сумма квадратов имеет n – 1 степеней свободы, поскольку каждое наблюдение Х ij сравнивается с общим средним , вычисленным по всем n наблюдениям. Если каждую из этих сумм разделить на соответствующее количество степеней свободы, возникнут три вида дисперсии: межгрупповая (mean square among - MSA), внутригрупповая (mean square within - MSW) и полная (mean square total - MST):

Несмотря на то что основное предназначение дисперсионного анализа - сравнить математические ожидания с групп, чтобы выявить эффект условий эксперимента, его название обусловлено тем, что главным инструментом является анализ дисперсий разного типа. Если нулевая гипотеза является истинной, и между математическими ожиданиями с групп нет существенных различий, все три дисперсии - MSA, MSW и MST - являются оценками дисперсии σ 2 , присущей анализируемым данным. Таким образом, чтобы проверить нулевую гипотезу Н 0: μ 1 = μ 2 = … = μ с и альтернативную гипотезу Н 1 : не все μ j одинаковы j = 1, 2, …, с ), необходимо вычислить статистику F -критерия, представляющую собой отношение двух дисперсий, MSA и MSW. Тестовая F -статистика в однофакторном дисперсионном анализе

Статистика F -критерия подчиняется F -распределению с с – 1 степенями свободы в числителе MSA и n – с степенями свободы в знаменателе MSW . При заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F F U , присущего F -распределению с с – 1 n – с степенями свободы в знаменателе. Таким образом, как показано на рис. 4, решающее правило формулируется следующим образом: нулевая гипотеза Н 0 отклоняется, если F > F U ; в противном случае она не отклоняется.

Рис. 4. Критическая область дисперсионного анализа при проверке гипотезы Н 0

Если нулевая гипотеза Н 0 является истинной, вычисленная F -статистика близка к 1, поскольку ее числитель и знаменатель являются оценками одной и той же величины - дисперсии σ 2 , присущей анализируемым данным. Если нулевая гипотеза Н 0 является ложной (и между математическими ожиданиями разных групп существует значительная разница), вычисленная F -статистика будет намного больше единицы, поскольку ее числитель, MSA, помимо естественной изменчивости данных, оценивает эффект условий эксперимента или разности между группами, в то время как знаменатель MSW оценивает лишь естественную изменчивость данных. Таким образом, процедура ANOVA представляет собой F -критерий, в котором при заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F -статистика больше верхнего критического значения F U , присущего F -распределению с с – 1 степенями свободы в числителе и n – с степенями свободы в знаменателе, как показано на рис. 4.

Для иллюстрации однофакторного дисперсионного анализа вернемся к сценарию, изложенному в начале заметки. Цель эксперимента - определить, имеют ли парашюты, сотканные из синтетического волокна, полученного от разных поставщиков, одинаковую прочность. В каждой из групп соткано по пять парашютов. Группы разделены по поставщикам- Поставщик 1, Поставщик 2, Поставщик 3 и Поставщик 4. Прочность парашютов измеряется с помощью специального устройства, испытывающего ткань на разрыв с двух сторон. Сила, необходимая для разрыва парашюта, измеряется по особой шкале. Чем выше сила разрыва, тем прочнее парашют. Excel позволяет провести анализ F -статистики одним кликом. Пройдите по меню Данные Анализ данных , и выберите строку Однофакторный дисперсионный анализ , заполните открывшееся окно (рис. 5). Результаты эксперимента (сила разрыва), некоторые описательные статистики и результаты однофакторного дисперсионного анализа представлены на рис. 6.

Рис. 5. Окно Однофакторный дисперсионный анализ Пакета анализа Excel

Рис. 6. Показатели прочности парашютов, сотканных из синтетических волокон, полученных от разных поставщиков, описательные статистики и результаты однофакторного дисперсионного анализа

Анализ рисунка 6 показывает, что между выборочными средними наблюдается некоторая разница. Средняя прочность волокон, полученных от первого поставщика, равна 19,52, от второго - 24,26, от третьего - 22,84 и от четвертого - 21,16. Можно ли назвать эту разницу статистически значимой? Распределение силы разрыва продемонстрировано на диаграмме разброса (рис. 7). На ней ясно видны разности как между группами, так и внутри них. Если бы объем каждой группы был больше, для их анализа можно было бы применить диаграмму «ствол и листья», блочную диаграмму или график нормального распределения.

Рис. 7. Диаграмма разброса прочности парашютов, сотканных из синтетических волокон, полученных от четырех поставщиков

Нулевая гипотеза утверждает, что между средними показателями прочности нет существенных различий: Н 0: μ 1 = μ 2 = μ 3 = μ 4 . Альтернативная гипотеза заключается в том, что существует по крайней мере один поставщик, у которого средняя прочность волокон отличается от других: Н 1 : не все μ j одинаковы (j = 1, 2, …, с ).

Общее среднее (см. рис. 6) =СРЗНАЧ(D12:D15) = 21,945; для определения также можно усреднить все 20 исходных чисел: =СРЗНАЧ(A3:D7). Значения дисперсий рассчитываются Пакетом анализа и отражаются в табличке Дисперсионный анализ (см. рис. 6): SSA = 63,286, SSW = 97,504, SST = 160,790 (см. колонку SS таблицы Дисперсионный анализ рисунка 6). Средние значения вычисляются путем деления этих сумм квадратов на соответствующее количество степеней свободы. Поскольку с = 4, а n = 20, получаем следующие значения степеней свободы; для SSA: с – 1 = 3; для SSW: n – c = 16; для SST: n – 1 = 19 (см. колонку df ). Таким образом: MSA = SSA / (с – 1) = 21,095; MSW = SSW / (n – c ) = 6,094; MST = SST / (n – 1 ) = 8,463 (см. колонку MS ). F -статистика = MSA / MSW = 3,462 (см. колонку F ).

Верхнее критическое значение F U , характерное для F -распределения, определяется по формуле =F.ОБР(0,95;3;16) = 3,239. Параметры функции =F.ОБР(): α = 0,05, числитель имеет три степени свободы, а знаменатель - 16. Таким образом, вычисленная F -статистика, равная 3,462, превышает верхнее критическое значение F U = 3,239, нулевая гипотеза отклоняется (рис. 8).

Рис. 8. Критическая область дисперсионного анализа при уровне значимости, равном 0,05, если числитель имеет три степени свободы, а знаменатель -16

р -значение, т.е. вероятность того, что при истинной нулевой гипотезе F -статистика не меньше 3,46, равно 0,041 или 4,1% (см. колонку р-Значение таблицы Дисперсионный анализ рисунка 6). Поскольку эта величина не превышает уровень значимости α = 5%, нулевая гипотеза отклоняется. Более того, р -значение свидетельствует о том, что вероятность обнаружить такую или большую разность между математическими ожиданиями генеральных совокупностей при условии, что на самом деле они одинаковы, равна 4,1%.

Итак. Между четырьмя выборочными средними существует разница. Нулевая гипотеза заключалась в том, что все математические ожидания четырех генеральных совокупностей равны между собой. В этих условиях мера полной изменчивости (т.е. полная вариация SST) прочности всех парашютов вычисляется путем суммирования квадратов разностей между каждым наблюдением X ij и общим средним . Затем полная вариация разделялась на два компонента (см. рис. 1). Первый компонент представлял собой межгрупповую вариацию SSA, а второй - внутригрупповую SSW.

Чем объясняется изменчивость данных? Иначе говоря, почему все наблюдения не одинаковы? Одна из причин заключается в том, что разные фирмы поставляют волокна разной прочности. Это частично объясняет, почему группы имеют разные математические ожидания: чем сильнее эффект условий эксперимента, тем больше разность между математическими ожиданиями групп. Другой причиной изменчивости данных является естественная изменчивость любого процесса, в данном случае - производства парашютов. Даже если бы все волокна приобретались у одного и того же поставщика, их прочность была бы неодинаковой при прочих равных условиях. Поскольку этот эффект проявляется в каждой из групп, он называется внутригрупповой вариацией.

Разности между выборочными средними называются межгрупповой вариацией SSA. Часть внутригрупповой вариации, как уже указывалось, объясняется принадлежностью данных разным группам. Однако даже если бы группы были совершенно одинаковыми (т.е. нулевая гипотеза была бы истинной), межгрупповая вариация все равно существовала. Причина этого заключается в естественной изменчивости процесса производства парашютов. Поскольку выборки разные, их выборочные средние отличаются друг от друга. Следовательно, если нулевая гипотеза является истинной, как межгрупповая, так и внутригрупповая изменчивость представляют собой оценку изменчивости генеральной совокупности. Если нулевая гипотеза является ложной, межгрупповая гипотеза будет больше. Именно этот факт лежит в основе F -критерия для сравнения разностей между математическими ожиданиями нескольких групп.

После выполнения однофакторного дисперсионного анализа и обнаружения значительной разницы между фирмами остается неизвестным, какой же из поставщиков существенно отличается от остальных. Нам известно лишь, что математические ожидания генеральных совокупностей не равны. Иначе говоря, по крайней мере одно из математических ожиданий существенно отличается от других. Чтобы определить, какой из поставщиков отличается от других, можно воспользоваться процедурой Тьюки , использующей попарное сравнение между поставщиками. Эта процедура была разработана Джоном Тьюки. Впоследствии он и К. Крамер независимо друг от друга модифицировали эту процедуру для ситуаций, в которых объемы выборок отличаются друг от друга.

Множественное сравнение: процедура Тьюки-Крамера

В нашем сценарии для сравнения прочности парашютов использовался однофакторный дисперсионный анализ. Обнаружив значительные различия между математическими ожиданиями четырех групп, необходимо определить, какие именно группы отличаются друг от друга. Хотя существует несколько способов решить эту задачу, мы опишем лишь процедуру множественного сравнения Тьюки-Крамера. Этот метод является примером процедур апостериорного сравнения (post hoc comparison), поскольку проверяемая гипотеза формулируется после анализа данных. Процедура Тьюки-Крамера позволяет одновременно сравнить все пары групп. На первом этапе вычисляются разности X j – X j , где j ≠ j , между математическими ожиданиями с(с – 1)/2 групп. Критический размах процедуры Тьюки-Крамера вычисляется по формуле:

где Q U - верхнее критическое значение распределения стьюдентизированного размаха, имеющего с степеней свободы в числителе и n – с степеней свободы в знаменателе.

Если объемы выборок не одинаковы, критический размах вычисляется для каждой пары математических ожиданий отдельно. На последнем этапе каждая из с(с – 1)/2 пар математических ожиданий сравнивается с соответствующим критическим размахом. Элементы пары считаются значимо различными, если модуль разности |X j – X j | между ними превышает критический размах.

Применим процедуру Тьюки-Крамера к задаче о прочности парашютов. Поскольку компания, производящая парашюты, имеет четыре поставщика, следует проверить 4(4 – 1)/2 = 6 пар поставщиков (рис. 9).

Рис. 9. Попарные сравнения выборочных средних

Поскольку все группы имеют одинаковый объем (т.е. все n j = n j ), достаточно вычислить только один критический размах. Для этого по таблице Дисперсионного анализа (рис. 6) определим величину MSW = 6,094. Затем найдем величину Q U при α = 0,05, с = 4 (число степеней свободы в числителе) и n – с = 20 – 4 = 16 (число степеней свободы в знаменателе). К сожалению, я не нашел соответствующей функции в Excel, так что воспользовался таблицей (рис. 10).

Рис. 10. Критическое значение стьюдентизированного размаха Q U

Получаем:

Поскольку лишь 4,74 > 4,47 (см. нижнюю таблицу рис. 9), статистически значимая разница существует между первым и вторым поставщиком. Все остальные пары имеют выборочные средние, которые не позволяют говорить о их различии. Следовательно, средняя прочность парашютов, сотканных из волокон, приобретенных у первого поставщика, значимо меньше, чем у второго.

Необходимые условия однофакторного дисперсионного анализа

При решении задачи о прочности парашютов мы не проверяли, выполняются ли условия, при которых можно использовать однофакторный F -критерий. Как же узнать, можно ли применять однофакторный F -критерий при анализе конкретных экспериментальных данных? Однофакторный F -критерий можно применять, только если выполняются три основных предположения: экспериментальные данные должны быть случайными и независимыми, иметь нормальное распределение, а их дисперсии должны быть одинаковыми.

Первое предположение - случайность и независимость данных - должно выполняться всегда, поскольку корректность любого эксперимента зависит от случайности выбора и/или процесса рандомизации. Чтобы избежать искажения результатов, необходимо, чтобы данные извлекались из с генеральных совокупностей случайно и независимо друг от друга. Аналогично данные должны быть случайным образом распределенными по с уровням интересующего нас фактора (экспериментальным группам). Нарушение этих условий может серьезно исказить результаты дисперсионного анализа.

Второе предположение - нормальность - означает, что данные извлечены из нормально распределенных генеральных совокупностей. Как и для t -критерия, однофакторный дисперсионный анализ на основе F -критерия относительно мало чувствителен к нарушению этого условия. Если распределение не слишком значительно отличается от нормального, уровень значимости F -критерия изменяется мало, особенно если объем выборок достаточно велик. Если же условие о нормальности распределения нарушается серьезно, следует применять .

Третье предположение - однородность дисперсии - означает, что дисперсии каждой генеральной совокупности равны между собой (т.е. σ 1 2 = σ 2 2 = … = σ j 2). Это предположение позволяет решить, разделять или объединять внутригрупповые дисперсии. Если объемы групп совпадают, условие однородности дисперсии слабо влияет на выводы, полученные с помощью F -критерия. Однако, если объемы выборок неодинаковы, нарушение условия о равенстве дисперсий может серьезно исказить результаты дисперсионного анализа. Таким образом, следует стремиться к тому, чтобы объемы выборок были одинаковыми. Одним из методов проверки предположения об однородности дисперсии является критерий Левенэ , описанный ниже.

Если из всех трех условий нарушается лишь условие об однородности дисперсии, можно применять процедуру, аналогичную t -критерию, использующему раздельную дисперсию (подробнее см. ). Однако, если предположения о нормальном распределении и однородности дисперсии нарушаются одновременно, необходимо выполнить нормализацию данных и уменьшить разности между дисперсиями или применить непараметрическую процедуру.

Критерий Левенэ для проверки однородности дисперсии

Несмотря на то что F -критерий относительно устойчив к нарушениям условия о равенстве дисперсий в группах, грубое нарушение этого предположения существенно влияет на уровень значимости и мощность критерия. Возможно, одним из наиболее мощных является критерий Левенэ . Для проверки равенства дисперсий с генеральных совокупностей проверим следующие гипотезы:

Н 0: σ 1 2 = σ 2 2 = … = σ j 2

Н 1 : не все σ j 2 одинаковы (j = 1, 2, …, с )

Модифицированный критерий Левенэ основан на утверждении, что если изменчивость в группах одинакова, для проверки нулевой гипотезы о равенстве дисперсий можно применить анализ дисперсии абсолютных величин разностей между наблюдениями и медианами групп. Итак, сначала следует вычислить абсолютные величины разностей между наблюдениями и медианами в каждой группе, а затем выполнить однофакторный дисперсионный анализ полученных абсолютных величин разностей. Для иллюстрации критерия Левенэ вернемся к сценарию, изложенному в начале заметки. Используя данные, представленные на рис. 6, проведем аналогичный анализ, но в отношении модулей разниц исходных данных и медиан по каждой выборке отдельно (рис. 11).

Аналитическая статистик а

7.1 Дисперсионный анализ . 2

В данном варианте метода влиянию каждой из градаций подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех .

Пример 1. Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в табл. 1.

Таблица 1. Количество воспроизведенных слов (по J . Greene , M D " Olivera , 1989, p . 99)

№ испытуемого

Группа 1 низкая скорость

Группа 2 средняя скорость

Группа 3 высокая скорость

суммы

средние

7,17

6,17

4,00

Общая сумма

Дисперсионный однофакторный анализ позволяет проверить гипотезы:

H 0 : различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы

H 1 : Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы.

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок:

1. подсчитаем SS факт - вариативность признака, обусловленную действи­ем исследуемого фактора. Часто встречающееся обозначе­ние SS - сокращение от "суммы квадратов" ( sum of squares ). Это со­кращение чаще всего используется в переводных источниках (см., на­пример: Гласс Дж., Стенли Дж., 1976).

,(1)

где Т с – сумма индивидуальных значений по каждому из условий. Для нашего примера 43, 37, 24 (см. табл. 1);

с – количество условий (градаций) фактора (=3);

n – количество испытуемых в каждой группе (=6);

N – общее количество индивидуальных значений (=18);

Квадрат общей суммы индивидуальных значений (=104 2 =10816)

Отметим разницу между , в которой все индивидуальные значения сначала возводятся в квадрат, а потом суммируются, и , где индивидуальные значения сначала суммируются для получения об­щей суммы, а потом уже эта сумма возводится в квадрат.

По формуле (1) рассчитав фактическую вариативность признака, получаем:

2. подсчитаем SS общ – общую вариативность признака:


(2)

3. подсчитаем случайную (остаточную) величину SS сл , обусловленную неучтенными факторами:

(3)

4.число степеней свободы равно:

=3-1=2(4)

5.«средний квадрат» или усредненная величина соответствующих сумм квадратов SS равна:

(5)

6.значение статистики критерия F эмп рассчитаем по формуле:

(6)

Для нашего примера имеем: F эмп =15,72/2,11=7,45

7.определим F крит по статистическим таблицам Приложения 3 для df 1 =k 1 =2 и df 2 =k 2 =15 табличное значение статистики равно 3,68

8. если F эмп < F крит, то нулевая гипотеза принимается, в противном случае принимается альтернативная гипотеза. Для нашего примера F эмп > F крит (7.45>3.68), следовательно п

Вывод: различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (р<0,05). Т.о. скорость предъявления слов влияет на объем их воспроизведения.

7.1.2 Дисперсионный анализ для связанных выборок

Метод дисперсионного анализа для связанных выборок применяет­ся в тех случаях, когда исследуется влияние разных градаций фактора или разных условий на одну и ту же выборку испытуемых. Градаций фактора должно быть не менее трех .

В данном случае различия между испытуемыми - возможный са­мостоятельный источник различий. Однофакторный дисперсионный анализ для связанных выборок позволит определить, что перевешивает - тенденция, выраженная кривой изменения фактора, или индивидуальные различия между испытуемыми. Фактор индивидуальных различий может оказаться более значимым, чем фактор изменения экспериментальных условий.

Пример 2. Группа из 5 испытуемых была обследована с помощью трех экспериментальных заданий, направленных на изучение интеллектуальной, настойчивости (Сидоренко Е. В., 1984). Каждому испытуемому инди­видуально предъявлялись последовательно три одинаковые анаграммы: четырехбуквенная, пятибуквенная и шестибуквенная. Можно ли счи­тать, что фактор длины анаграммы влияет на длительность попыток ее решения?

Таблица 2. Длительность решения анаграмм (сек)

Код испытуемого

Условие 1. четырехбуквенная анаграмма

Условие 2. Пятибуквенная анаграмма

Условие 3. шестибуквенная анаграмма

Суммы по испытуемым

суммы

1244

1342

Сформулируем гипотезы. Наборов гипотез в данном случае два.

Набор А .

Н 0 (А): Различия в длительности попыток решения анаграмм разной длины являются не более выраженными, чем различия, обусловленные случайными причинами.

Н 1 (А): Различия в длительности попыток решенияанаграммразной длины являются более выраженными, чем различия, обусловлен­ные случайными причинами.

Набор Б.

Н о (Б): Индивидуальные различия между испытуемыми являются не более выраженными, чем различия, обусловленные случайными причинами.

Н 1 (Б): Индивидуальные различия между испытуемыми являются более выраженными, чем различия, обусловленные случайными причи­нами.

Последовательность операций в однофакторном дисперсионном анализе для связанных выборок:

1. подсчитаем SS факт - вариативность признака, обусловленную действи­ем исследуемого фактора по формуле (1).

где Т с – сумма индивидуальных значений по каждому из условий (столбцов). Для нашего примера 51, 1244, 47 (см. табл. 2); с – количество условий (градаций) фактора (=3); n – количество испытуемых в каждой группе (=5); N – общее количество индивидуальных значений (=15); - квадрат общей суммы индивидуальных значений (=1342 2)

2. подсчитаем SS исп - вариативность признака, обусловленную индивидуальными значения испытуемых.

Где Т и – сумма индивидуальных значений по каждому испытуемому. Для нашего примера 247, 631, 100, 181, 183 (см. табл. 2); с – количество условий (градаций) фактора (=3); N – общее количество индивидуальных значений (=15);

3. подсчитаем SS общ – общую вариативность признака по формуле (2):


4. подсчитаем случайную (остаточную) величину SS сл , обусловленную неучтенными факторами по формуле (3):

5. число степеней свободы равно (4):

; ; ;

6. «средний квадрат» или математическое ожидание суммы квадратов, усредненная величина соответствующих сумм квадратов SS равна (5):

;

7. значение статистики критерия F эмп рассчитаем по формуле (6):

;

8. определим F крит по статистическим таблицам Приложения 3 для df 1 =k 1 =2 и df 2 =k 2 =8 табличное значение статистики F крит_факт =4,46, и для df 3 =k 3 =4 и df 2 =k 2 =8 F крит_исп =3,84

9. F эмп_факт > F крит_факт (6,872>4,46), следовательно принимается альтернативная гипотеза.

10. F эмп_исп < F крит_исп (1,054<3,84), следовательно принимается нулевая гипотеза.

Вывод: различия в объеме воспроизведения слов в разных условиях являются более выраженными, чем различия, обусловленные случайными причинами (р<0,05).Индивидуальные различия между испытуе­мыми являются не более выраженными, чем различия, обусловленные случайными причинами.

7.2 Корреляционный анализ

7.2.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, могут ли учащиеся с высоким уровнем тревожности демонстрировать стабильные академичес­кие достижения, или связана ли продолжительность работы учителя в школе с размером его заработной платы, или с чем больше связан уровень умственного развития учащихся - с их успеваемостью по математике или по литературе и т.п.?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изме­нение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью дру­гого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем боль­ше рост, тем больше вес человека. Однако из этого правила име­ются исключения, когда относительно низкие люди имеют из­быточный вес, и, наоборот, астеники, при высоком росте име­ют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи - это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статисти­ки. «Оба термина, - пишет Е.В. Сидоренко, - корреляционная связь и корреляционная зависимость - часто используются как синони­мы. Зависимость подразумевает влияние, связь - любые согласован­ные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака (Е.В. Сидоренко, 2000).

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (ли­нейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимо­сти полученных коэффициентов корреляции.

Корреляционные связи различаются по форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решае­мых задач в контрольной сессии. Криволинейной может быть, напри­мер, связь между уровнем мотивации и эффективностью выполнения задачи (см. рис. 1). При повышении мотивации эффективность вы­полнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутст­вует уже снижение эффективности.

Рис.1. Связь между эффективностью решения задачи

и силой мотивационной тен­денции (по J. W. A t k in son, 1974, р 200)

По направлению корреляционная связь может быть положитель­ной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значе­ниям одного признака - низкие значения другого. При отрицательной корреляции соотношения обратные. При положительной корреляции коэффициент корреляции имеет положительный знак, например r =+0,207 , при отрицательной корреля­ции - отрицательный знак, например r =-0,207 .

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции.

Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

Максимальное воз­можное абсолютное значение коэффициента корреляции r =1,00 ; минимальное r =0,00 .

Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

сильная , или тесная при коэффициенте корреляции r >0,70 ;

средняя при 0,50< r <0,69 ;

умеренная при 0,30< r <0,49 ;

слабая при 0,20< r <0,29 ;

очень слабая при r <0,19 .

Переменные Х и Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции (см. табл. 3):

Таблица 3. Использование коэффициента корреляции в зависимости от типа переменных

Тип шкалы

Мера связи

Переменная X

Переменная У

Интервальная или отношений

Интервальная или отношений

Коэффициент Пирсона

Ранговая, интервальная или отношений

Коэффициент Спирмена

Ранговая

Ранговая

Коэффициент Кендалла

Дихотомическая

Дихотомическая

Коэффициент « j »

Дихотомическая

Ранговая

Рангово-бисериальный

Дихотомическая

Интервальная или отношений

Бисериальный

7.2.2 Коэффициент корреляции Пирсона

Термин «корреляция» был введен в науку выдающимся анг­лийским естествоиспытателем Френсисом Гальтоном в 1886 г. Однако точную формулу для подсчета коэффициента корреля­ции разработал его ученик Карл Пирсон.

Коэффициент характеризует наличие только линейной свя­зи между признаками, обозначаемыми, как правило, символами X и Y. Формула расчета коэффициента корреляции построена таким образом, что, если связь между признаками имеет ли­нейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициен­том линейной корреляции Пирсона. Если же связь между пере­менными X и Y не линейна, то Пирсон предложил для оценки тесноты этой связи так называемое корреляционное отношение.

Величина коэффициента линейной корреляции Пирсона не может превышать +1 и быть меньше чем -1. Эти два числа +1 и -1 - являются границами для коэффициента корреляции. Когда при расчете получается величина большая +1 или меньшая -1 - следовательно произошла ошибка в вычислениях.

Знак коэффициента корреляции очень важен для интерпре­тации полученной связи. Подчеркнем еще раз, что если знак ко­эффициента линейной корреляции - плюс, то связь между кор­релирующими признаками такова, что большей величине одного признака (переменной) соответствует большая величина дру­гого признака (другой переменной). Иными словами, если один показатель (переменная) увеличивается, то соответственно уве­личивается и другой показатель (переменная). Такая зависимость носит название прямо пропорциональной зависимости.

Если же получен знак минус, то большей величине одного признака соответствует меньшая величина другого. Иначе гово­ря, при наличии знака минус, увеличению одной переменной (признака, значения) соответствует уменьшение другой пере­менной. Такая зависимость носит название обратно пропорцио­нальной зависимости.

В общем виде формула для подсчета коэффициента корреля­ции такова:

(7)

гдех i - значения, принимаемые в выборке X,

y i - значения, принимаемые в выборке Y;

Средняя по X, - средняя по Y.

Расчет коэффициента корреляции Пирсона предполагает, что переменные Х и У распределены нормально .

В формуле (7) встречается величина при делении на n (число значений переменной X или Y) она называется ковариацией . Формула (7) предполагает также, что при расчете коэффициентов корреля­ции число значений переменной Х равно числу значений переменной Y .

Число степеней свободы k = n -2.

Пример 3. 1 0 школьникам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли вза­имосвязь между временем решения этих задач? Переменная X - обозначает среднее время реше­ния наглядно-образных, а переменная Y- сред­нее время решения вербальных заданий тестов .

Решение. Представим исходные данные в виде таблицы 4, в которой введены дополнительные столб­цы, необходимые для расчета по формуле (7).

Таблица 4

№ испытуемых

x

х i -

(х i - ) 2

y i -

(y i -) 2

16,7

278,89

51,84

120,24

13,69

17,2

295,84

63,64

7,29

51,84

19,44

68,89

14,44

31,54

59,29

7,84

21,56

0,49

46,24

4,76

10,89

17,64

13,86

10,89

51,84

23,76

68,89

10,8

116,64

89,64

68,89

18,8

353,44

156,04

Сумма

357

242

588,1

1007,6

416,6

Среднее

35,7

24,2

Рассчитываем эмпирическую величину коэффициента корре­ляции по формуле (7):

Определяем критические значения для полученного коэффи­циента корреляции по таблице Приложения 3. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степе­ней свободы рассчитывается как k = n – 2 = 8.

к крит =0,72 > 0,54 , следовательно, гипотеза Н 1 отвергается и при­нимается гипотеза H 0 , иными словами, связь между временем решения наглядно-образных и вербальных заданий теста не доказана.

7.3 Регрессионный анализ

Это группа методов, направ­ленных на выявление и математическое выражение тех измене­ний и зависимостей, которые имеют место в системе случайных величин. Если такая система моделирует педагогическую, то, следовательно, путем регрессионного анализа выявляются и ма­тематически выражаются психолого-педагогические явления и зависимости между ними. Характеристики этих явлений изме­ряются в разных шкалах, что накладывает ограничения на спо­собы математического выражения изменений и зависимостей, которые изучаются педагогом-исследователем.

Методы регрессионного анализа рассчитаны, главным обра­зом, на случай устойчивого нормального распределе­ния, в котором изменения от опыта к опыту проявляются лишь в виде независимых испытаний.

Выделяются различные формальные задачи регрессионного анализа. Они могут быть простыми или сложными по формулировкам, по математиче­ским средствам и трудоемкости. Перечислим и рассмотрим на примерах те из них, которые представляются основными.

Первая задача - выявить факт изменчивости изучаемого яв­ления при определенных, но не всегда четко фиксированных условиях. В предыдущей лекции мы уже решали эту задачу с помощью параметрических и непараметрических критериев.

Вторая задача - выявить тенденцию как периодическое изменение признака. Сам по себе этот признак мо­жет быть зависим или не зависим от переменной-условия (он может зависеть от неизвестных или неконтролируемых иссле­дователем условий). Но это не важно для рассматриваемой за­дачи, которая ограничивается лишь выявлением тенденции и ее особенностей.

Проверка гипотез об отсутствии или наличии тенденции мо­жет выполняться с использованием кри­терия Аббе. Критерий Аббе предназначен для проверки гипотез о равенстве средних значений, установленных для 4

Эмпирическое значение критерия Аббе вычисля­ется по формуле:

(8)

где -среднее арифметическое из выборки;

п – число значений в выборке.

Согласно критерию, гипотеза о равенстве средних отклоняется (принимается альтернативная гипотеза), если значение статистики . Табличное (критическое) значение статистики определяется из таблицы для q -критерия Аббе, которая с сокращениями заимствована из книги Л.Н. Болышева и Н.В. Смирнова (см. Приложение 3).

В качестве таких величин, для которых применим критерий Аббе, могут высту­пать выборочные доли или проценты, средние арифметические и другие статистики выборочных распределений, если они близ­ки к нормальному (или предварительно нормализованы). По­этому критерий Аббе может найти широкое применение в пси­холого-педагогических исследованиях. Рассмотрим пример вы­явления тенденции с помощью критерия Аббе.

Пример 4. В табл. 5 представлена динамика процента студентов IV курса, на «отлично» сдававших экзамены в зимние сессии на протяжении 10 лет работыодного изфакультетовуниверситета.Требуетсяустановить, есть ли тенденция к повышению успеваемости.

Таблица 5. Динамика процента отличников четвертого курса за 10 лет работы факультета

Учебный год

1995-96

10,8

1996-97

16,4

1997-98

17,4

1998-99

22,0

1999-00

23,0

2000-01

21,5

2001-02

26,1

2002-03

17,2

2003-04

27,5

2004-05

33,0

В качестве нулевой проверяем гипотезу об отсутствии тенденции, т. е. о равенстве процентов.

Усредняем проценты, приведенные в табл. 5, находим, что =21,5. Вычисляем разности между последующими и предыдущими зна­чениями в выборке, возводим их в квадрат и суммируем:

Аналогично вычисляет знаменатель в формуле (8), суммируя квадраты разностей между каждым измерением и средним арифметическим:

Теперь по формуле (8) получаем:

В таблице критерия Аббе из Приложения 3 находим, что при n =10 и уровне значимости 0,05 критическое значение , что больше полученного нами 0,41, следовательно гипотезу о равенстве процента «отличников» приходится отклонить, и можно принять альтернативную гипотезу о наличии тенденции.

Третья задача – это выявление закономерности, выра­женной в виде корреляционного уравнения (регрессии) .

Пример 5. Эстонский исследователь Я. Микк , изучая трудности по­нимания текста, установил «формулу читаемости», которая представляет собой множественную линейную регрессию:

Оценка трудности понимания текста,

где х 1 - длина самостоятельных предложений в количестве печат­ных знаков,

х 2 - процент различных незнакомых слов,

х 3 - абстрактность повторяющихся понятий, выраженных существительными.

Сравнивая между собой коэффициенты регрессии, выражающие степень влияния факторов, можно видеть, что трудность понимания текста опреде­ляется прежде всего его абстрактностью. Вдвое мень­ше (0,27) трудность понимания текста зависит от числа незнакомых слов и практически она совсем не зависит от длины предложении.

Дисперсионный анализ основан на работах знаменитого математика Р.А.Фишера . Несмотря на достаточно солидный «возраст», данный метод до сих пор остается одним из основных при проведении биологических и сельскохозяйственных исследований. Идеи, положенные в основу дисперсионного анализа, широко используются во многих других методах математического анализа экспериментальных данных, а также при планировании биологических и сельскохозяйственных экспериментов.

Дисперсионный анализ позволяет:

1) сравнивать две или несколько выборочных средних;

2) одновременно изучать действие нескольких независимых факторов, при этом можно определить как эффект каждого фактора в изменчивости изучаемого признака, так и их взаимодействие;

3) правильно планировать научный эксперимент.

Изменчивость живых организмов проявляется в виде разброса или рассеяния значений отдельных признаков в пределах, которые определяются степенью биологической выравненности материала и характером взаимосвязей с условиями среды. Признаки, изменяющиеся под воздействием тех или иных причин, называют результативными .

Факторы это любые воздействия или состояния, разнообразие которых может так или иначе отражаться на разнообразии результативного признака. Под статистическим влиянием факторов в дисперсионном анализе понимается отражение в разнообразии результативного признака того разнообразия изучаемых факторов, которое организовано в исследовании.

Под разнообразием будем понимать наличие неодинаковых значений каждого признака у разных особей, объединенных в группу. Разнообразие группы особей по изучаемому признаку может иметь разную степень, которая обычно измеряется показателями разнообразия (или изменчивости): лимитами, средним квадратическим отклонением, коэффициентом вариации. В дисперсионном анализе степень разнообразия индивидуальных и средних значений признака измеряется и сравнивается особыми способами, составляющими специфику этого общего метода.

Организация факторов заключается в том, что каждому изучаемому фактору придается несколько значений. В соответствии с этими значениями каждый фактор разбивается на несколько градаций; для каждой градации подбирается по принципу случайной выборки несколько особей, у которых впоследствии и измеряется величина результативного признака.

Для того, чтобы выяснить степень и достоверность влияния изучаемых факторов, надо измерить и оценить ту часть общего разнообразия, которая вызывается этими факторами.

Факторы, влияющие на степень варьирования результативного признака, делятся на:

1)регулируемые

2) случайные

Регулируемые (систематические) факторы вызываются действием изучаемого в эксперименте фактора, который имеет в опыте несколько градаций. Градация фактора – это степень его воздействия на результативный признак. В соответствии с градациями признака выделяется несколько вариантов опыта для сравнения. Поскольку эти факторы предварительно обусловлены, их называют регулируемыми в исследованиях, т.е. заданными, зависящими от организации опыта. Следовательно, регулируемые факторы – факторы, действие которых изучается в опыте, именно они и обусловливают различия между средними выборочными разных вариантов–межгрупповую (факториальную) дисперсию.

Случайные факторы определяются естественным варьированием всех признаков биологических объектов в природе. Это неконтролируемые в опыте факторы. Они оказывают случайное влияние на результативный признак, обусловливают экспериментальные ошибки и определяют внутри каждого варианта разброс (рассеяние) признака. Этот разброс носит название внутригрупповой (случайной) дисперсии .

Таким образом, относительная роль отдельных факторов в общей изменчивости результативного признака характеризуется дисперсией и может быть изучена с помощью дисперсионного анализа или анализа рассеяния

Дисперсионный анализ основан на сравнении межгрупповой и внутригрупповой дисперсий . Если межгрупповая дисперсия не превышает внутригрупповую, значит, различия между группами имеют случайный характер. Если межгрупповая дисперсия существенно выше, чем внутригрупповая, то между изучаемыми группами (вариантами) существуют статистически значимые различия, обусловленные действием изучаемого в опыте фактора.

Из этого следует, что при статистическом изучении результативного признака при помощи дисперсионного анализа следует определить его варьирование по вариантам, повторениям, остаточное варьирование внутри этих групп и общее варьирование результативного признака в опыте. В соответствии с этим различают три вида дисперсий :

1) Общую дисперсию результативного признака (S y 2);

2) Межгрупповую, или частную, между выборками (S y 2);

3) Внутригрупповую, остаточную (S z 2).

Следовательно, дисперсионный анализ это расчленение общей суммы квадратов отклонений и общего числа степеней свободы на части или компоненты, соответствующие структуре эксперимента, и оценка значимости действия и взаимодействия изучаемых факторов по F-критерию. В зависимости от числа одновременно исследуемых факторов различают двух-, трех-, четырехфакторный дисперсионный анализ.

При обработке полевых однофакторных статистических комплексов, состоящих из нескольких независимых вариантов, общая изменчивость результативного признака, измеряемая общей суммой квадратов (С y), расчленяется на три компонента: варьирование между вариантами (выборками) – С V , варьирование повторений (варианты связаны между собой общим контролируемым условием – наличием организованных повторений) – С p и варьирование внутри вариантов С z . В общей форме изменчивость признака представлена следующим выражением:

С y = С V +С p + С z .

Общее число степеней свободы (N -1) также расчленяется на три части:

степени свободы для вариантов (l – 1);

степени свободы для повторений (n – 1);

случайного варьирования (n – 1) × (l – 1).

Суммы квадратов отклонений, по данным полевого опыта – статистического комплекса с вариантами – l и повторениями – n, находят следующим образом. Сначала с помощью исходной таблицы определяют суммы по повторениям – Σ P , вариантам – Σ V и общую сумму всех наблюдений - Σ X.

Затем вычисляют следующие показатели:

Общее число наблюдений N = l × n;

Корректирующий фактор (поправку) С кор = (Σ X 1) 2 / N;

Общую сумму квадратов Cy = Σ X 1 2 – C кор;

Сумму квадратов для повторений C p = Σ P 2 / (l –C кор);

Сумму квадратов для вариантов C V = Σ V 2 / (n – 1);

Сумму квадратов для ошибки (остаток) C Z = C y - C p - C V .

Полученные суммы квадратов C V и C Z делят на соответствующие им степени свободы и получают два средних квадрата (дисперсии):

Вариантов S v 2 = C V / l – 1;

Ошибки S Z 2 = C Z / (n – 1)×(l – 1).

Оценка существенности разностей между средними. Полученные средние квадраты используют в дисперсионном анализе для оценки значимости действия изучаемых факторов путем сравнения дисперсии вариантов (S v 2) с дисперсией ошибки (S Z 2) по критерию Фишера (F = S Y 2 / S Z 2). За единицу сравнения принимают средний квадрат случайной дисперсии, который определяет случайную ошибку эксперимента.

Применение критерия Фишера позволяет установить наличие или отсутствие существенных различий между выборочными средними, но не указывает конкретных различий между средними.

Проверяемой H o – гипотезой является предположение - все выборочные средние являются оценками одной генеральной средней и различия между ними несущественны. Если F факт = S Y 2 / S Z 2 ≤ F теор , то нулевая гипотеза не отвергается. Между выборочными средними нет существенных различий, и на этом проверка заканчивается. Нулевая гипотеза отвергается при F факт = S Y 2 / S Z 2 ≥ F теор Значение F- критерия для принятого в исследовании уровня значимости находят в соответствующей таблице с учетом степеней свободы для дисперсии вариантов и случайной дисперсии. Обычно пользуются 5%-ным уровнем значимости, а при более строгом подходе 1% - ным и даже 0,1%-ным.

Для выборки объема n выборочная дисперсия вычисляется как сумма квадратов отклонений от выборочного среднего, деленная на n-1 (объем выборки минус единица). Таким образом, при фиксированном объеме выборки n дисперсия есть функция суммы квадратов (отклонений), обозначаемая, для краткости, SS(от английского Sum of Squares – Сумма квадратов). Далее слово выборочная мы часто опускаем, прекрасно понимая, что рассматривается выборочная дисперсия или оценка дисперсии. В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты.:

SS ошибок и SS эффекта. Внутригрупповая изменчивость (SS ) обычно называется остаточной компонентой или дисперсией ошибки. Это означает, что обычно при проведении эксперимента она не может быть предсказана или объяснена. С другой стороны, SS эффекта (или компоненту дисперсии между группами) можно объяснить различием между средними значениями в группах. Иными словами, принадлежность к некоторой группе объясняет межгрупповую изменчивость, т.к. нам известно, что эти группы обладают разными средними значениями.

Основная логика дисперсионного анализа. Подводя итоги, можно сказать, что целью дисперсионного анализа является проверка статистической значимости различия между средними (для групп или переменных). Эта проверка проводится с помощью разбиения суммы квадратов на компоненты, т.е. с помощью разбиения общей дисперсии (вариации) на части, одна из которых обусловлена случайной ошибкой (то есть внутригрупповой изменчивостью), а вторая связана с различием средних значений. Последняя компонента дисперсии затем используется для анализа статистической значимости различия между средними значениями. Если это различие значимо , нулевая гипотеза отвергается и принимается альтернативная гипотеза о существовании различия между средними.

Зависимые и независимые переменные. Переменные, значения которых определяется с помощью измерений в ходе эксперимента (например, балл, набранный при тестировании), называются зависимыми переменными. Переменные, которыми можно управлять при проведении эксперимента (например, методы обучения или другие критерии, позволяющие разделить наблюдения на группы или классифицировать) называются факторами или независимыми переменными.

Множество факторов. Мир по своей природе сложен и многомерен. Ситуации, когда некоторое явление полностью описывается одной переменной, чрезвычайно редки. Например, если мы пытаемся научиться выращивать большие помидоры, следует рассматривать факторы, связанные с генетической структурой растений, типом почвы, освещенностью, температурой и т.д. Таким образом, при проведении типичного эксперимента приходится иметь дело с большим количеством факторов. Основная причина, по которой использование дисперсионного анализа предпочтительнее повторного сравнения двух выборок при разных уровнях факторов с помощью серий t- критерия, заключается в том, что дисперсионный анализ существенно более эффективен и, для малых выборок, более информативен.

Вывод. Дисперсионный анализ разработан и введен в практику сельскохозяйственных и биологических исследований английским ученым Р. А. Фишером. Сущность дисперсионного анализа заключается, в разложении общей изменчивости признака и общего числа степеней свободы на составляющие части, соответствующие структуре полевого опыта, также в оценке действующего фактора по критерию Фишера.

Где Общая изменчивость признака, обусловленная действием изучаемого вопроса, неоднородностью почвенного плодородия и случайными ошибками в опыте.

Варьирование урожаев по повторениям полевого опыта.

Варьирование урожаев по вариантам опыта, связанное с действием изучаемого вопроса.

Варьирование урожаев, связанное со случайными ошибками в опыте.

Вывод в дисперсионном анализе делается согласно следующим правилам:

1. В опыте есть существенные различия, если Fфактическое ≥Fтеоритическое. В опыте нет существенных различий, если Fфактическое

2. НСР – Наименьшая существенная разность, используестся для определения разности между вариантами. Если разность d≥ НСР, то различия между вариантами существенные. Если d< НСР, то различия между вариантами не существенные.

Группы вариантов.

1. Если разница d– существенная, и указывает на повышение урожайности, то варианты относятся к 1 группе.

2. Если разница d– не существенная, то варианты относятся ко 2 группе.

3. Если разница d– существенная, но указывает на снижение урожайности, то варианты относятся к 3 группе.

Выбор формулы дисперсионного анализа зависит от методов размещения вариантов в опыте:

1. Для организованных повторений:

2. Для неорганизованных повторений.

Дисперсионный анализ представляет собой систему понятий и технических приемов, позволяющих обобщить процедуру сравнения двух средних для двух выборок, взятых из генеральных совокупностей с нормальным распределением, на случай большого числа выборок.

Назначение сервиса . С помощью данного онлайн-калькулятора можно:

  • провести однофакторный дисперсионный анализ;
  • ответить на вопрос - совпадают или нет средние значения экспериментов;
  • при выбранном уровне значимости подтвердить или опровергнуть нулевую гипотезу H 0 о равенстве групповых средних;

Инструкция . Укажите число измерений (количество строк) q , количество уровней фактора p нажмите Далее. Полученное решение сохраняется в файле Word . Данная процедура обычно используется для отбора значимых факторов для построения множественного уравнения регрессии .

Пример . Изделие железнодорожного транспорта с целью испытания на надежность эксплуатируется q раз, i=1,...q на p уровнях времени работы Tj , j=1,..., p. В каждом испытании подсчитываются числа отказов n ij . На уровне значимости α = 0,05 исследовать влияние времени работы изделия на число появления отказов методом однофакторного дисперсионного анализа при q=4 , p=4 . Результаты испытаний n ij представлены в таблицах.
Решение .
Процедура однофакторного дисперсионного анализа . Находим групповые средние:

N П 1 П 2 П 3 П 4
1 145 210 195 155
2 140 200 190 150
3 150 190 240 180
4 190 195 210 175
x 156.25 198.75 208.75 165

Обозначим р - количество уровней фактора (р=4). Число измерений на каждом уровне одинаково и равно q=4.


(1)



R общ = ∑∑(x ij -x ) (2)

R ф = q·(x ij -x )


R ост = R общ - R ф












Если f набл >f кр, то фактор оказывает существенное воздействие и его следует учитывать, в противном случае он оказывает незначительное влияние, которым можно пренебречь.

(4)


N П 2 1 П 2 2 П 2 3 П 2 4
1 21025 44100 38025 24025
2 19600 40000 36100 22500
3 22500 36100 57600 32400
4 36100 38025 44100 30625
99225 158225 175825 109550



R общ = 99225 + 158225 + 175825 + 109550 - 4 4 182.19 2 = 11748.44
Находим R ф по формуле (5):
R ф = 4(156.25 2 + 198.75 2 + 208.75 2 + 165 2) - 4 182.19 2 = 7792.19
Получаем R ост: R ост = R общ - R ф = 11748.44 - 7792.19 = 3956.25
Определяем факторную и остаточную дисперсии:



Оценка факторной дисперсии больше оценки остаточной дисперсии, поэтому можно сразу утверждать не справедливость нулевой гипотезы о равенстве математических ожиданий по слоям выборки.
Иначе говоря, в данном примере фактор Ф оказывает существенное влияния на случайную величину.

Находим f набл

Для уровня значимости α=0.05, чисел степеней свободы 3 и 12 находим f кр из таблицы распределения Фишера-Снедекора.
f кр (0.05; 3; 12) = 3.49
В связи с тем, что f набл > f кр, нулевую гипотезу о существенном влиянии фактора на результаты экспериментов принимаем.

Пример №2 . Студентов 1-го курса опрашивали с целью выявления занятий, которым они посвящают свое свободное время. Проверьте, различаются ли распределение вербальных и невербальных предпочтений студентов.
Находим групповые средние:

N П 1 П 2
1 12 17
2 18 19
3 23 25
4 10 7
5 15 17
x 15.6 17
Обозначим р - количество уровней фактора (р=2). Число измерений на каждом уровне одинаково и равно q=5.
В последней строке помещены групповые средние для каждого уровня фактора.
Общую среднюю можно получить как среднее арифметическое групповых средних:
(1)
На разброс групповых средних процента отказа относительно общей средней влияют как изменения уровня рассматриваемого фактора, так и случайные факторы.
Для того чтобы учесть влияние данного фактора, общая выборочная дисперсия разбивается на две части, первая из которых называется факторной S 2 ф, а вторая - остаточной S 2 ост.
С целью учета этих составляющих вначале рассчитывается общая сумма квадратов отклонений вариант от общей средней:
R общ =∑∑(x ij -x )
и факторная сумма квадратов отклонений групповых средних от общей средней, которая и характеризует влияние данного фактора:
R ф =q∑(x ij -x )
Последнее выражение получено путем замены каждой варианты в выражении R общ групповой средней для данного фактора.
Остаточная сумма квадратов отклонений получается как разность:
R ост = R общ - R ф
Для определения общей выборочной дисперсии необходимо R общ разделить на число измерений pq:

а для получения несмещенной общей выборочной дисперсии это выражение нужно умножить на pq/(pq-1):

Соответственно, для несмещенной факторной выборочной дисперсии:

где p-1 - число степеней свободы несмещенной факторной выборочной дисперсии.
С целью оценки влияния фактора на изменения рассматриваемого параметра рассчитывается величина:

Так как отношение двух выборочных дисперсий S 2 ф и S 2 ост распределено по закону Фишера-Снедекора, то полученное значение f набл сравнивают со значением функции распределения

в критической точке f кр, соответствующей выбранному уровню значимости a.
Если f набл >f кр, то фактор оказывает существенное воздействие и его следует учитывать, в противном случае он оказывает незначительное влияние, которым можно пренебречь.
Для расчета R набл и R ф могут быть использованы также формулы:
R общ =x ij ²-x ², (4)
R ф =q∑x j ²-x ², (5)
Находим общую среднюю по формуле (1):
Для расчета Rобщ по формуле (4) составляем таблицу 2 квадратов вариант:
N П 2 1 П 2 2
1 144 289
2 324 361
3 529 625
4 100 49
5 225 289
1322 1613

Общая средняя вычисляется по формуле (1):

R общ = 1322 + 1613 - 5 2 16.3 2 = 278.1
Находим R ф по формуле (5):
R ф = 5(15.6 2 + 17 2) - 2 16.3 2 = 4.9
Получаем R ост: R ост = R общ - R ф = 278.1 - 4.9 = 273.2
Определяем факторную и остаточную дисперсии :


Если средние значения случайной величины, вычисленные по отдельным выборкам одинаковы, то оценки факторной и остаточной дисперсий являются несмещенными оценками генеральной дисперсии и различаются несущественно.
Тогда сопоставление оценок этих дисперсий по критерию Фишера должно показать, что нулевую гипотезу о равенстве факторной и остаточной дисперсий отвергнуть нет оснований.
Оценка факторной дисперсии меньше оценки остаточной дисперсии, поэтому можно сразу утверждать справедливость нулевой гипотезы о равенстве математических ожиданий по слоям выборки.
Иначе говоря, в данном примере фактор Ф не оказывает существенного влияния на случайную величину.
Проверим нулевую гипотезу H 0: равенство средних значений х.
Находим f набл

Для уровня значимости α=0.05, чисел степеней свободы 1 и 8 находим f кр из таблицы распределения Фишера-Снедекора .
f кр (0.05; 1; 8) = 5.32
В связи с тем, что f набл < f кр, нулевую гипотезу о существенном влиянии фактора на результаты экспериментов отклоняем.
Другим словами, распределение вербальных и невербальных предпочтений студентов различаются.

Задание . На заводе установлено четыре линии по выпуску облицовочной плитки. С каждой линии случайным образом в течение смены отобрано по 10 плиток и сделаны замеры их толщины (мм). Отклонения от номинального размера приведены в таблице. Требуется на уровне значимости a = 0,05 установить наличие зависимости выпуска качественных плиток от линии выпуска (фактор A).

Задание . На уровне значимости a = 0,05 исследовать влияние цвета краски на срок службы покрытия.

Пример №1 . Произведено 13 испытаний, из них – 4 на первом уровне фактора, 4 – на втором, 3 – на третьем и 2 на четвертом. Методом дисперсионного анализа при уровне значимости 0,05 проверить нулевую гипотезу о равенстве групповых средних. Предполагается, что выборки извлечены из нормальных совокупностей с одинаковыми дисперсиями. Результаты испытаний приведены в таблице.

Решение :
Находим групповые средние:

N П 1 П 2 П 3 П 4
1 1.38 1.41 1.32 1.31
2 1.38 1.42 1.33 1.33
3 1.42 1.44 1.34 -
4 1.42 1.45 - -
5.6 5.72 3.99 2.64
x 1.4 1.43 1.33 1.32
Обозначим р - количество уровней фактора (р=4). Число измерений на каждом уровне равно: 4,4,3,2
В последней строке помещены групповые средние для каждого уровня фактора.
Общая средняя вычисляется по формуле:

Для расчета Sобщ по формуле (4) составляем таблицу 2 квадратов вариант:
N П 2 1 П 2 2 П 2 3 П 2 4
1 1.9 1.99 1.74 1.72
2 1.9 2.02 1.77 1.77
3 2.02 2.07 1.8 -
4 2.02 2.1 - -
7.84 8.18 5.31 3.49
Общую сумму квадратов отклонений находят по формуле:

Находим S ф по формуле:


Получаем S ост: S ост = S общ - S ф = 0.0293 - 0.0263 = 0.003
Определяем факторную дисперсию:

и остаточную дисперсию:

Если средние значения случайной величины, вычисленные по отдельным выборкам одинаковы, то оценки факторной и остаточной дисперсий являются несмещенными оценками генеральной дисперсии и различаются несущественно.
Тогда сопоставление оценок этих дисперсий по критерию Фишера должно показать, что нулевую гипотезу о равенстве факторной и остаточной дисперсий отвергнуть нет оснований.
Оценка факторной дисперсии больше оценки остаточной дисперсии, поэтому можно сразу утверждать не справедливость нулевой гипотезы о равенстве математических ожиданий по слоям выборки.
Иначе говоря, в данном примере фактор Ф оказывает существенное влияния на случайную величину.
Проверим нулевую гипотезу H 0: равенство средних значений х.
Находим f набл

Для уровня значимости α=0.05, чисел степеней свободы 3 и 12 находим f кр из таблицы распределения Фишера-Снедекора.
f кр (0.05; 3; 12) = 3.49
В связи с тем, что f набл > f кр, нулевую гипотезу о существенном влиянии фактора на результаты экспериментов принимаем (нулевую гипотезу о равенстве групповых средних отвергаем). Другими словами, групповые средние в целом различаются значимо.

Пример №2 . В школе 5 шестых классов. Психологу ставится задача, определить, одинаковый ли средний уровень ситуативной тревожности в классах. Для этого были приведены в таблице. Проверить уровень значимости α=0.05 предположение, что средняя ситуативная тревожность в классах не различается.

Пример №3 . Для изучения величины X произведено 4 испытания на каждом из пяти уровней фактора F. Результаты испытаний приведены в таблице. Выяснить, существенно ли влияние фактора F на величину X. Принять α = 0.05. Предполагается, что выборки извлечены из нормальных совокупностей с одинаковыми дисперсиями.

Пример №4 . Предположим, что в педагогическом эксперименте участвовали три группы студентов по 10 человек в каждой. В группах применили различные методы обучения: в первой - традиционный (F 1), во второй - основанный на компьютерных технологиях (F 2), в третьей - метод, широко использующий задания для самостоятельной работы (F 3). Знания оценивались по десятибалльной системе.
Требуется обработать полученные данные об экзаменах и сделать заключение о том, значимо ли влияние метода преподавания, приняв за уровень значимости α=0.05.
Результаты экзаменов заданы таблицей, F j - уровень фактора x ij - оценка i-го учащегося обучающегося по методике F j .

i 1 2 3 4 5 6 7 8 9 10
Уровень фактора F j F 1 7 5 6 4 6 7 8 6 5 7
F 2 9 8 10 8 7 10 10 9 7 6
F 3 6 7 6 6 9 5 7 8 7 8

Пример №5 . Показаны результаты конкурсного сортоиспытания культур (урожайность в ц.с га). Каждый сорт испытывался на четырех участках. Методом дисперсионного анализа изучите влияние сорта на урожайность. Установите существенность влияния фактора (долю межгрупповой вариации в общей вариации) и значимость результатов опыта при уровне значимости 0,05.
Урожайность на сортоиспытательных участках

Сорт Урожайность по повторностям ц. с га
1 2 3 4
1
2
3
42,4
52,5
52,3
37,4
50,1
53,0
40,7
53,8
51,4
38,2
50,7
53,6

Дисперсионный анализ

1. Понятие дисперсионного анализа

Дисперсионный анализ -это анализ изменчивости признака под влиянием каких-либо контролируемых переменных факторов. В зарубежной литературе дисперсионный анализ часто обозначается как ANOVA, что переводится как анализ вариативности (Analysis of Variance).

Задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака вычленить вариативность иного рода:

а) вариативность обусловленную действием каждой из исследуемых независимых переменных;

б) вариативность, обусловленную взаимодействием исследуемых независимых переменных;

в) случайную вариативность, обусловленную всеми другими неизвестными переменными.

Вариативность, обусловленная действием исследуемых переменных и их взаимодействием, соотносится со случайной вариативностью. Показателем этого соотношения является критерий F Фишера.

В формулу расчета критерия F входят оценки дисперсий, то есть параметров распределения признака, поэтому критерий F является параметрическим критерием.

Чем в большей степени вариативность признака обусловлена исследуемыми переменными (факторами) или их взаимодействием, тем выше эмпирические значения критерия .

Нулевая гипотеза в дисперсионном анализе будет гласить, что средние величины исследуемого результативного признака во всех гра­дациях одинаковы.

Альтернативная гипотеза будет утверждать, что средние вели­чины результативного признака в разных градациях исследуемого фак­тора различны.

Дисперсионный анализ позволяет нам констатировать изменение признака, но при этом не указывает направление этих изменений.

начнем рассмотрение дисперсионного анализа с простей­шего случая, когда исследуется действие только одной переменной (одного фактора).

2. Однофакторный дисперсионный анализ для несвязан­ных выборок

2.1. Назначение метода

Метод однофакторного дисперсионного анализа применяется в тех случаях, когда исследуются изменения результативного признака под влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвер­гаются разные выборки испытуемых. Градаций фактора должно быть не менее трех. (Градаций может быть и две, но в этом случае мы не сможем установить нели­нейных зависимостей и более разумным представляется использование более про­стых).

Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.

Гипотезы

H 0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.

2.2. Ограничения метода однофакторного дисперсионного анали­за для несвязанных выборок

1. Однофакторный дисперсионный анализ требует не менее трех града­ций фактора и не менее двух испытуемых в каждой градации.

2. Результативный признак должен быть нормально распределен в ис­следуемой выборке.

Правда, обычно не указывается, идет ли речь о распределении признака во всей обследованной выборке или в той ее части, которая составляет дисперсионный комплекс.

3. Пример решения задачи методом однофакторного дисперсионного анализа для несвязанных выборок на примере:

Три различные группы из шести испытуемых получили списки из десяти слов. Первой группе слова предъявлялись с низкой скоростью -1 слово в 5 секунд, второй группе со средней скоростью - 1 слово в 2 секунды, и третьей группе с большой скоростью - 1 слово в секунду. Было предсказано, что показатели воспроизведения будут зависеть от скорости предъявления слов. Результаты представлены в Табл. 1.

Количество воспроизведенных слов Таблица 1

№ испытуемого

низкая скорость

средняя скорость

высокая скорость

Общая сумма

H 0: Различия в объеме воспроизведения слов между группами являются не более выраженными, чем случайные различия внутри каждой группы.

H 1: Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы. Используя экспериментальные значения, представленные в Табл. 1, установим некоторые величины, которые будут необходимы для расчета критерия F.

Расчет основных величин для однофакторного дисперсионного анализа представим в таблице:

Таблица 2

Таблица 3

Последовательность операций в однофакторном дисперсионном анализе для несвязанных выборок

Часто встречающееся в этой и последующих таблицах обозначе­ние SS - сокращение от "суммы квадратов" (sum of squares). Это со­кращение чаще всего используется в переводных источниках.

SS факт означает вариативность признака, обусловленную действи­ем исследуемого фактора;

SS общ - общую вариативность признака;

S CA -вариативность, обусловленную неучтенными факторами, "случайную" или "остаточную" вариативность.

MS - "средний квадрат", или математическое ожидание суммы квадратов, усредненная величина соответствующих SS.

df - число степеней свободы, которое при рассмотрении непара­метрических критериев мы обозначили греческой буквой v .

Вывод: H 0 отклоняется. Принимается H 1 . Различия в объеме воспроизведения слов между группами являются более выраженными, чем случайные различия внутри каждой группы (α=0,05). Итак, скорость предъявления слов влияет на объем их воспроизведения.

Пример решения задачи в Excel представлен ниже:

Исходные данные:

Используя команду: Сервис->Анализ данных->Однофакторный дисперсионный анализ, получим следующие результаты:

error: