Действительные числа, рациональные числа и иррациональные числа. Числа: натуральные, целые, рациональные, действительные. Обыкновенные и десятичные дроби Натуральные действительные

Рисунок 3 Организационная диаграмма

Добавление организационной диаграммы выполнено с помощью кнопки Добавить диаграмму или организационную диаграмму, в её блоках заменён исходный тест, после чего весь объект сжат по вертикали.

1.1 Программа WordArt

Программа предназначена для ввода в документ художественных надписей, их редактирования, размещения в тексте и др.

Вставка объекта выполняется следующим образом:

    сделать щелчок левой мышью по клавише Добавить объект Word Art , выбрать вид надписи, нажать клавишу ОК;

    в появившемся окне Изменение текста WordArt задать тип шрифта, его размер и начертание (полужирный, курсив), ввести текст и нажать клавишу ОК .

    появится панель WordArt , имеющая вид (рис. 4):

Рисунок 4 Панель инструментов WordArt

Панель содержит кнопки: Добавить объект WordArt ,Изменить текст…, Коллекция WordArt , Формат объекта WordArt (цвета и линии, размер, положение на экране, обтекание, рисунок, надпись), Меню Текст-Фигура (формы надписей), Вертикальный текст и др.

Размеры текста можно изменить с помощью белых кружков контура выделения. Перемещение текста выполняется мышью, при этом нужно ухватить текст за его середину или линию контура выделения. Вращение объекта выполняется с помощью зелёных кружков, наклон надписи –

с помощью жёлтых ромбиков. Цвет и другие параметры объекта изменяются с помощью кнопки Формат объекта WordArt или с основной панели Рисование, с которой дополнительно можно задать эффекты затенения и объёмности.

Например, название газеты "Знамя " после ввода и настройки с помощью программы WordArt может иметь вид (рис. 5):

Пример 3

Рисунок 5 Надпись "Знамя"

2 Разработка настенного объявления

При его разработке используются текстовые поля, которые создаются с помощью кнопки Надпись. Надпись – это кадр, "заплата", которая накладывается на документ и может содержать любые данные – текст, таблицу, картинки и другие объекты. Такое объявление обычно состоит из рисунка, текста объявления, названия организации и листков "отрывных телефонов". Все элементы объявления вводятся в свои текстовые поля №1-№5:

Пример 4: Последовательность действий (возможная) при создании настенного объявления с использованием текстовых полей:

    С помощью кнопки Надпись панели инструментов Рисование создайте текстовое поле №1, совпадающее по размерам с объявлением.

    В меню Формат выберите пункт Границы и заливка и создайте рамку вокруг текстового поля №1 – это размерные границы объявления. Рамка может быть двойной, полужирной, пунктирной и т.п.

    В левом верхнем углу поля №1 создайте поле №2 (без обрамления), в

котором будет размещаться название организации.

    В панели Рисование выберите пункт Добавить объект WordArt .

    На экране появится окно WordArt, выберите выпуклую надпись, нажмите ОК. В поле Ввод текста наберите название организации "студент". Задайте тип шрифта Arial, размер 18, начертание- полужирный, курсив, нажмите OK . В текстовом поле №2 появится название организации, выгнутое дугой, растяните его по вертикали.

    Создайте текстовое поле №3, по размеру вписывающегося в дугу слова "студент". Разместите рисунок внутри выгнутого дугой текста. Для этого в меню Вставка выберите пункт Рисунок\ Картинки , в открывшемся диалоговом окне в списке файлов выберите подходящую картинку и нажмите кнопку OK . Вставленный рисунок окружён рамкой с белыми квадратиками. Если рисунок не совпадает по размеру с полем №3, то его можно уменьшить, переместив мышью эти квадратики, при этом рисунок обрезается. Чтобы он уменьшался пропорционально, нужно щелкнуть по картинке мышью, появится рамка с чёрными квадратиками, с помощью которых можно подстроить размеры рисунка без обрезания.

    Создайте текстовое поле №4 и наберите в нем текст объявления "Рефераты, курсовые, дипломные работы: ПЕЧАТЬ, ОФОРМЛЕНИЕ". Выделите и отформатируйте текст по размеру поля №4 шрифтом Arial Narrow, кегль16, полужирный, расположение по ширине, цвета тёмнокрасный, тёмносиний и автоцвет (чёрный).

    Создайте текстовое поле №5 в строке, где будет располагаться первый слева отрывной телефон. Добавьте в него объект WordArt с эффектом вертикального текста, введите номер телефона.

    Скопируйте текстовое поле №5 с номером телефона с помощью мыши при нажатой клавише Ctrl столько раз, сколько оно поместиться по ширине в текстовом поле №1. Можно воспользоваться буфером обмена, т.е. выделить объект, скопировать его в буфер командой Правка\ Копировать или кнопкой Копировать на панели Стандартная , затем поставить курсор на место вставки и выполнить команду Правка\Вставить или кнопкой Вставить , но при вставке копии наложатся друг на друга и их придётся дополнительно перемещать в ряд вручную.

    Группировка всех объектов, чтобы в дальнейшем использовать их как единый объект, например, при копировании. Если этого не сделать, то каждый объект (картинка, ярлык телефона, название…) будет копироваться отдельно. Группировка объектов может быть выполнена двумя способами:

Удерживая нажатой клавишу Shift , щелкните мышью по каждому из объектов, так они окажутся выделенными все одновременно. Затем

раскройте панель инструментов Рисование и нажмите кнопку Группировать . Вокруг объектов появится общая рамка (они станут единым объектом);

Нажать кнопку Выбор объектов на панели Рисование и растянуть сетку вокруг всех объектов объявления, они все одновременно выделятся и нажать нажмите кнопку Группировать . При необходимости объекты можно будет разгруппировать, используя кнопку Разгруппировать .

    Мышью с клавишей Ctrl или через буфер обмена, как указано в п. 9.

Теперь страницу с объявлениями можно распечатать и разрезать, на

листе формата А4 помещается 8 объявлений такого размера.

    Сохраните полученное настенное объявление (рис. 6) на дискете командой Файл\Сохранить как… .

Следует заметить, что рисунки и текстовые поля можно накладывать друг на друга в несколько слоёв в разной последовательности, а также размещать их сверху или позади основного уровня - текста. С этой целью используются 6 команд панели инструментов Рисование\Порядок .

Объекты, созданные вWordArt, можно в дальнейшем редактиро-вать. Для этого достаточно щелк-нуть мышью по объекту, раскро-ется меню WordArt, и изменить в нём текстовой эффект, шрифт и т.д.

Для вставки объекта в текст нужно выделить объект и в меню Формат , команда Границы и заливка , в окне Формат объекта

во вкладке Положение выбрать

нужное обтекание текстом.

Рисунок 6 Настенное объявление

е Формат объекта и заливкалением вокруг рамки? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Для рис. 6 выполнено обтекание " по контуру".

Рассмотренная последовательность действий при создании настенного объявления не является единственной и оптимальной. Однако она позволяет получить опыт использования программы WordArt


Что такое число? ЧИСЛО - одно из основных понятий математики, зародилось в глубокой древности и постепенно расширялось и обобщалось. В связи со счётом отдельных предметов возникло понятие о целых положительных (натуральных) числах, а затем идея о безграничности натурального ряда чисел: 1, 2, 3, Натуральные числа – это числа, используемые при счёте предметов. 1


История. На раскопках стойбища древних людей нашли волчью кость, на которой 30 тысяч лет тому назад, какой – то древний охотник нанёс пятьдесят пять зарубок. Видно, что, делая эти зарубки, он считал по пальцам. Узор на кости состоял из одиннадцати групп, по пять зарубок в каждой. При этом первые пять групп он отделил от остальных длинной чертой. Также в Сибири и в других местах были найдены, сделанные в ту же далёкую эпоху каменные орудия и украшения, на которых тоже были чёрточки и точки, сгруппированные по 3, по 5 или по 7.Кельты - древний народ, живший в Европе 2500 лет тому назад, являющиеся предками французов и англичан, считали двадцатками (две руки и две ноги давали двадцать пальцев). Следы этого сохранились во французском языке, где слово «восемьдесят» звучит как «четыре раза двадцать». Двадцатками считали и другие народы – предки датчан и голландцев, осетин и грузин. 2




Чётные и нечётные числа. Чётное число целое число, которое делится без остатка на 2: …, 2, 4, 6, 8, … Нечётное число целое число, которое не делится без остатка на 2: …, 1, 3, 5, 7, 9, … Пифагор определяя число как энергию и считал, что через науку о числах раскрывается тайна Вселенной, ибо число заключает в себе тайну вещей. Чётные числа Пифагор считал женскими, а нечётные – мужскими: 2+3=5 5- это символ семьи, брака. Чётные и нечётные числа = женские и мужские числа. 4


Простые и составные. Простое число – это натуральное число, имеющее ровно два различных натуральных делителя: единицу и само себя. Последовательность простых чисел начинается так: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, … Составные числа- это числа имеющие 3 и больше делителей. Изучением свойств простых чисел занимается теория чисел. Таким образом, все натуральные числа больше единицы разбиваются на простые и составные. 5


Совершенные и несовершенные числа. Совершенные числа, целые положительные числа, равные сумме всех своих правильных (т. е. меньших этого числа) делителей. Например, числа 6 = и 28 = являются совершенными. До сих пор (1976) неизвестно ни одного нечётного Сов. ч. и вопрос о существовании их остаётся открытым. Исследования о Сов. ч. были начаты пифагорейцами, приписывавшими особый мистический смысл числам и их сочетаниям. Несовершенными Пифагор называл числа, сумма правильных делителей, которых меньше его самого. 6




Магические числа. Секреты чисел привлекают людей, заставляют вникать, разбираться, сравнивать свои выводы с реальным соотношением дел. К цифрам в древнем мире относились очень трепетно. Люди, познавшие их, считались великими, их приравнивали к божествам. Самый простой пример – это отсутствие во многих странах самолётов с бортовым номером 13, этажей и номеров в гостиницах с номером «13». 8
Магический ряд 2 – число равновесия и контраста, и поддерживающие устойчивость, смешивающие позитивные и негативные качества. 6 – Символ надёжности. Это идеальное число, которое делится как на чётное число(2), так и на нечётное(3), таким образом, объединяя элементы каждого. 8 – Число материального успеха. Оно означает надёжность, доведённую до совершенства, поскольку представлено двойным квадратом. Разделённое пополам, оно имеет равные части (4 и 4). Если его ещё разделить, то части будут тоже равными (2, 2, 2, 2), показывая четырёхкратное равновесие. 9 – Число всеобщего успеха, самое большое из всех цифр. Как трёхкратное числу 3, девятка превращает неустойчивость в стремление. 10





Числа разделяются на классы. Целые положительные числа - N = {1, 2, 3, … } - составляют множество натуральных чисел. Зачастую и 0 считают натуральным числом.

Множество целых чисел Z включает в себя все натуральные числа, число 0 и все натуральные числа, взятые со знаком минус: Z = {0, 1, -1, 2, -2, …}.

Каждое рациональное число x можно задать парой целых чисел (m, n), где m является числителем, n - знаменателем числа: x = m/n. Эквивалентным представлением рационального числа является его задание в виде числа, записанного в позиционной десятичной системе счисления, где дробная часть числа может быть конечной или бесконечной периодической дробью. Например, число x = 1/3 = 0,(3) представляется бесконечной периодической дробью.

Числа, задаваемые бесконечными непериодическими дробями, называются иррациональными числами . Таковыми являются, например, все числа вида vp, где p - простое число. Иррациональными являются известные всем числа и e.

Объединение множеств целых, рациональных и иррациональных чисел составляет множество вещественных чисел. Геометрическим образом множества вещественных чисел является прямая линия - вещественная ось, где каждой точке оси соответствует некоторое вещественное число, так что вещественные числа плотно и непрерывно заполняют всю вещественную ось.

Плоскость представляет геометрический образ множества комплексных чисел, где вводятся уже две оси - вещественная и мнимая. Каждое комплексное число, задаваемое парой вещественных чисел, представимо в виде: x = a+b*i, где a и b - вещественные числа, которые можно рассматривать как декартовы координаты числа на плоскости.

Делители и множители

Рассмотрим сейчас классификацию, которая делит множество натуральных чисел на два подмножества - простых и составных чисел. В основе этой классификации лежит понятие делимости натуральных чисел. Если n делится нацело на d, то говорят, что d "делит" n, и записывают это в виде: . Заметьте, это определение, возможно, не соответствует интуитивному пониманию: d "делит" n, если n делится на d, а не наоборот. Число d называется делителем числа n. У каждого числа n есть два тривиальных делителя - 1 и n. Делители, отличные от тривиальных, называются множителями числа n. Число n называется простым, если у него нет делителей, отличных от тривиальных. Простые числа делятся только на 1 и сами на себя. Числа, у которых есть множители, называются составными. Число 1 является особым числом, поскольку не относится ни к простым, ни к составным числам. Отрицательные числа также не относятся ни к простым, ни к составным, но всегда можно рассматривать модуль числа и относить его к простым или составным числам.

Любое составное число N можно представить в виде произведения его множителей: . Это представление не единственно, например 96 = 8*12 = 2*3*16. Однако для каждого составного числа N существует единственное представление в виде произведения степеней простых чисел: , где - простые числа и . Это представление называется разложением числа N на простые множители. Например .

Если и , то d является общим делителем чисел m и n. Среди всех общих делителей можно выделить наибольший общий делитель, обозначаемый как НОД(m,n). Если НОД(m,n) = 1, то числа m и n называются взаимно простыми. Простые числа взаимно просты, так что НОД(q,p) =1, если q и p - простые числа.

Если и , то A является общим кратным чисел m и n. Среди всех общих кратных можно выделить наименьшее общее кратное, обозначаемое как НОК(m,n). Если НОК(m,n) = m*n, то числа m и n являются взаимно простыми. НОК(q, p) =q*p, если q и p - простые числа.

Если через и обозначить множества всех простых множителей чисел m и n, то

Если получено разложение чисел m и n на простые множители, то, используя приведенные соотношения, нетрудно вычислить НОД(m,n) и НОК(m,n). Существуют и более эффективные алгоритмы, не требующие разложения числа на множители.

Алгоритм Эвклида

Эффективный алгоритм вычисления НОД(m,n) предложен еще Эвклидом. Он основывается на следующих свойствах НОД(m,n), доказательство которых предоставляется читателю:

Если , то по третьему свойству его можно уменьшить на величину n. Если же , то по второму свойству аргументы можно поменять местами и вновь придти к ранее рассмотренному случаю. Когда же в результате этих преобразований значения аргументов сравняются, то решение будет найдено. Поэтому можно предложить следующую схему:

while(m != n) { if(m < n) swap(m,n); m = m - n; } return(m);

Здесь процедура swap выполняет обмен значениями аргументов.

Если немного подумать, то становится ясно, что вовсе не обязательно обмениваться значениями - достаточно на каждом шаге цикла изменять аргумент с максимальным значением. В результате приходим к схеме:

while(m != n) { if(m > n) m = m - n; else n = n - m; } return(m);

Если еще немного подумать, то можно улучшить и эту схему, перейдя к циклу с тождественно истинным условием:

while(true) { if(m > n) m = m - n; else if (n > m) n = n - m; else return(m); }

Последняя схема хороша тем, что в ней отчетливо видна необходимость доказательства завершаемости этого цикла. Доказать завершаемость цикла нетрудно, используя понятие варианта цикла . Для данного цикла вариантом может служить целочисленная функция - max(m,n) , которая уменьшается на каждом шаге, оставаясь всегда положительной.

Достоинством данной версии алгоритма Эвклида является и то, что на каждом шаге используется элементарная и быстрая операция над целыми числами - вычитание. Если допустить операцию вычисления остатка при делении нацело, то число шагов цикла можно существенно уменьшить. Справедливо следующее свойство:

Это приводит к следующей схеме:

int temp; if(n>m) temp = m; m = n; n = temp; //swap(m,n) while(m != n) { temp = m; m = n; n = temp%n; }

Если немного подумать, то становится ясно, что вовсе не обязательно выполнять проверку перед началом цикла. Это приводит к более простой схеме вычисления НОД, применяемой обычно на практике:

int temp; while(m != n) { temp = m; m = n; n = temp%n; }

Для вычисления НОК(m, n) можно воспользоваться следующим соотношением:

А можно ли вычислить НОК(m, n), не используя операций умножения и деления? Оказывается, можно одновременно с вычислением НОД(m,n) вычислять и НОК(m,n). Вот соответствующая схема:

int x = v = m, y = u = n,; while(x != y) { if(x > y){ x = x - y; v = v + u;} else {y = y - x; u = u + v;} } НОД = (x + y)/2; НОК = (u+v)/2;

Доказательство того, что эта схема корректно вычисляет НОД, следует из ранее приведенных свойств НОД. Менее очевидна корректность вычисления НОК. Для доказательства заметьте, что инвариантом цикла является следующее выражение:

Это соотношение выполняется после инициализации переменных до начала выполнения цикла. По завершении цикла, когда x и y становятся равными НОД, из истинности инварианта следует корректность схемы. Нетрудно проверить, что операторы тела цикла оставляют утверждение истинным. Детали доказательства оставляются читателям.

Понятие НОД и НОК можно расширить, определив их для всех целых чисел. Справедливы следующие соотношения:

Расширенный алгоритм Эвклида

Иногда полезно представлять НОД(m,n) в виде линейной комбинации m и n:

В частности, вычисление коэффициентов a и b необходимо в алгоритме RSA - шифрования с открытым ключом. Приведу схему алгоритма, позволяющую вычислить тройку - d, a, b - наибольший общий делитель и коэффициенты разложения. Алгоритм удобно реализовать в виде рекурсивной процедуры

ExtendedEuclid(int m, int n, ref int d, ref int a, ref int b),

которая по заданным входным аргументам m и n вычисляет значения аргументов d, a, b. Нерекурсивная ветвь этой процедуры соответствует случаю n = 0, возвращая в качестве результата значения: d = m, a = 1, b = 0. Рекурсивная ветвь вызывает

ExtendedEuclid(n, m % n, ref d, ref a, ref b)

и затем изменяет полученные в результате вызова значения a и b следующим образом:

Доказательство корректности этого алгоритма построить нетрудно. Для нерекурсивной ветви корректность очевидна, а для рекурсивной ветви нетрудно показать, что из истинности результата, возвращаемого при рекурсивном вызове, следует его истинность для входных аргументов после пересчета значений a и b.

Как работает эта процедура? Вначале происходит рекурсивный спуск, пока n не станет равно нулю.

В этот момент впервые будет вычислено значение d и значения параметров a и b. После этого начнется подъем и будут перевычисляться параметры a и b.

Задачи
  • 49. Даны m и n - натуральные числа. Вычислите НОД(m, n). При вычислениях не используйте операций умножения и деления.
  • 50. Даны m и n - натуральные числа. Вычислите НОК(m, n).
  • 51. Даны m и n - натуральные числа. Вычислите НОК(m, n). При вычислениях не используйте операций умножения и деления.
  • 52. Даны m и n - целые числа. Вычислите НОД(m, n). При вычислениях не используйте операций умножения и деления.
  • 53. Даны m и n - целые числа. Вычислите НОК(m, n). При вычислениях не используйте операций умножения и деления.
  • 54. Даны m и n - целые числа. Вычислите НОД(m, n). При вычислениях используйте операцию взятия остатка от деления нацело.
  • 55. Даны m и n - целые числа. Вычислите НОК(m, n). При вычислениях используйте операцию взятия остатка от деления нацело.
  • 56. Даны m и n - целые числа. Вычислите тройку чисел - (d, a, b), используя расширенный алгоритм Эвклида.
  • 57. Даны m и n - натуральные числа. Представьте НОД(m, n) в виде линейной комбинации m и n.
  • 58. Даны m и n - целые числа. Представьте НОД(m, n) в виде линейной комбинации m и n.
  • 59. Даны m и n - целые числа. Проверьте, являются ли числа m и n взаимно простыми.
Простые числа

Среди четных чисел есть только одно простое число - это 2. Простых нечетных чисел сколь угодно много. Нетрудно доказать, что число , где - подряд идущие простые числа, является простым. Так что, если построено простых чисел, то можно построить еще одно простое число , большее . Отсюда следует, что множество простых чисел неограниченно. Пример: число N = 2*3*5*7 + 1 = 211 является простым числом.

Решето Эратосфена

Как определить, что число N является простым? Если допустима операция N % m, дающая остаток от деления числа N на число m, то простейший алгоритм состоит в проверке того, что остаток не равен нулю при делении числа N на все числа m, меньшие N. Очевидным улучшением этого алгоритма является сокращение диапазона проверки - достаточно рассматривать числа m в диапазоне .

Еще в 3-м веке до н.э. греческий математик Эратосфен предложил алгоритм нахождения простых чисел в диапазоне , не требующий операций деления. Этот алгоритм получил название "Решето Эратосфена". В компьютерном варианте идею этого алгоритма можно описать следующим образом. Построим массив Numbers, элементы которого содержат подряд идущие нечетные числа, начиная с 3. Вначале все числа этого массива считаются невычеркнутыми. Занесем первое невычеркнутое число из этого массива в массив SimpleNumbers - и это будет первое нечетное простое число (3). Затем выполним просеивание, проходя по массиву Numbers с шагом, равным найденному простому числу, вычеркивая все попадающиеся при этом проходе числа. При первом проходе будет вычеркнуто число 3 и все числа, кратные 3. На следующем проходе в таблицу простых чисел будет занесено следующее простое число 5, а из массива Numbers будут вычеркнуты числа, кратные 5. Процесс повторяется, пока не будут вычеркнуты все числа в массиве Numbers. В результате массив SimpleNumbers будет содержать таблицу первых простых чисел, меньших N.

Этот алгоритм хорош для нахождения сравнительно небольших простых чисел. Но если потребуется найти простое число с двадцатью значащими цифрами, то памяти компьютера уже не хватит для хранения соответствующих массивов. Замечу, что в современных алгоритмах шифрования используются простые числа, содержащие несколько сотен цифр.

Плотность простых чисел

Мы показали, что число простых чисел неограниченно. Понятно, что их меньше, чем нечетных чисел, но насколько меньше? Какова плотность простых чисел? Пусть - это функция, возвращающая число простых чисел, меньших n. Точно задать эту функцию не удается, но для нее есть хорошая оценка. Справедлива следующая теорема:

Функция асимптотически сверху приближается к своему пределу, так что оценка дает слегка заниженные значения. Эту оценку можно использовать в алгоритме решета Эратосфена для выбора размерности массива SimpleNumbers, когда задана размерность массива Numbers, и, наоборот, при заданной размерности таблицы простых чисел можно выбрать подходящую размерность для массива Numbers.

Табличный алгоритм определения простоты чисел

Если хранить таблицу простых чисел SimpleNumbers, в которой наибольшее простое число равно M, то достаточно просто определить, является ли число N, меньшее , простым. Если N меньше M, то достаточно проверить, находится ли число N в таблице SimpleNumbers. Если N больше M, то достаточно проверить, делится ли число N на числа из таблицы SimpleNumbers, не превосходящие значения vN. Понятно, что если у числа N нет простых множителей, меньших vN, то число N является простым.

Использование таблицы простых чисел требует соответствующей памяти компьютера, а следовательно, ограничивает возможности этого алгоритма, не позволяя использовать его для нахождения больших простых чисел.

Тривиальный алгоритм

Если N - нечетное число, то проверить, что оно является простым, можно на основе определения простоты числа. При этом не требуется никакой памяти для хранения таблиц чисел, - но, как всегда, выигрывая в памяти, мы проигрываем во времени. Действительно, достаточно проверить, делится ли нацело число N на подряд идущие нечетные числа в диапазоне . Если у числа N есть хоть один множитель, то оно составное, иначе - простое.

Все рассмотренные алгоритмы перестают эффективно работать, когда числа выходят за пределы разрядной сетки компьютера, отведенной для представления чисел, так что если возникает необходимость работы с целыми числами, выходящими за пределы диапазона System.Int64, то задача определения простоты такого числа становится совсем не простой. Существуют некоторые рецепты, позволяющие определить, что число является составным. Вспомним хотя бы известные со школьных времен алгоритмы. Если последняя цифра числа делится на 2, то и число делится на 2. Если две последние цифры числа делятся на 4, то и число делится на 4. Если сумма цифр делится на 3 (на 9), то и число делится на 3 (на 9). Если последняя цифра равна 0 или 5, то число делится на 5. Математики затратили много усилий, доказывая, что то или иное число является (или не является) простым числом. Сейчас есть особые приемы, позволяющие доказать, что числа некоторого вида являются простыми. Наиболее подходящими кандидатами на простоту являются числа вида , где p - это простое число. Например, доказано, что число , имеющее более 6000 цифр, является простым, но нельзя сказать, какие простые числа являются ближайшими соседями этого числа.

Задачи

Проекты

  • 67. Построить класс "Температура", позволяющий задавать температуру в разных единицах измерения. Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 68. Построить класс "Расстояния", позволяющий использовать разные системы мер. Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 69. Построить класс "Простые числа". Построить Windows-проект, поддерживающий интерфейс для работы с классом.
  • 70. Построить класс "Системы счисления". Построить Windows-калькулятор, поддерживающий вычисления в заданной системе счисления.
  • 71. Построить класс "Рациональные числа". Построить Windows-калькулятор, поддерживающий вычисления с этими числами.
  • 72. Построить класс "Комплексные числа". Построить Windows-калькулятор, поддерживающий вычисления с этими числами.

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами . В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса:

Первый класс справа называют классом единиц , второй - тысяч , третий - миллионов , четвёртый - миллиардов , пятый - триллионов , шестой - квадриллионов , седьмой - квинтиллионов , восьмой - секстиллионов .

Для удобства чтения записи многозначного числа, между классами оставляется небольшой пробел. Например, чтобы прочитать число 148951784296, выделим в нём классы:

и прочитаем число единиц каждого класса слева направо:

148 миллиардов 951 миллион 784 тысячи 296.

При чтении класса единиц в конце обычно не добавляют слово единиц.

Каждая цифра в записи многозначного числа занимает определённое место - позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом .

Счёт разрядов идёт справа налево. То есть, первая цифра справа в записи числа называется цифрой первого разряда, вторая цифра справа - цифрой второго разряда и т. д. Например, в первом классе числа 148 951 784 296, цифра 6 является цифрой первого разряда, 9 - цифра второго разряда, 2 - цифра третьего разряда:

Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами :
единицы называют единицами 1-го разряда (или простыми единицами )
десятки называют единицами 2-го разряда
сотни называют единицами 3-го разряда и т. д.

Все единицы, кроме простых единиц, называются составными единицами . Так, десяток, сотня, тысяча и т. д. - составные единицы. Каждые 10 единиц любого разряда составляют одну единицу следующего (более высокого) разряда. Например, сотня содержит 10 десятков, десяток - 10 простых единиц.

Любая составная единица по сравнению с другой единицей, меньшей её называется единицей высшего разряда , а по сравнению с единицей, большей её, называется единицей низшего разряда . Например, сотня является единицей высшего разряда относительно десятка и единицей низшего разряда относительно тысячи.

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, надо отбросить все цифры, означающие единицы низших разрядов и прочитать число, выражаемое оставшимися цифрами.

Например, требуется узнать, сколько всего сотен содержится в числе 6284, т. е. сколько сотен заключается в тысячах и в сотнях данного числа вместе.

В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит в числе есть две простые сотни. Следующая влево цифра - 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60. Всего, таким образом, в данном числе содержится 62 сотни.

Цифра 0 в каком-нибудь разряде означает отсутствие единиц в данном разряде. Например, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен - отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:

172 526 - сто семьдесят две тысячи пятьсот двадцать шесть.
102 026 - сто две тысячи двадцать шесть.

Понятие действительного числа: действительное число - (вещественное число), всякое неотрицательное или отрицательное число либо нуль. С помощью действительных чисел выражают измерения каждой физической величины .

Вещественное , или действительное число возникло из необходимости измерений геометрической и физической величин мира. Кроме того, для проведения операций извлечения корня, вычисления логарифма, решения алгебраических уравнений и т.д.

Натуральные числа образовались с развитием счета, а рациональные с потребностью управлять частями целого, то вещественные числа (действительные) используются для измерений непрерывных величин. Т.о., расширение запаса чисел, которые рассматриваются, привело к множеству вещественных чисел, которое кроме рациональных чисел состоит из других элементов, называемых иррациональные числа .

Множество действительных чисел (обозначается R ) - это множества рациональных и иррациональных чисел собранные вместе.

Действительные числа делят на рациональные и иррациональные .

Множество вещественных чисел обозначают и зачастую называют вещественной или числовой прямой . Вещественные числа состоят из простых объектов: целых и рациональных чисел .

Число, которое возможно записать как отношение, где m - целое число, а n - натуральное число, является рациональным числом .

Всякое рациональное число легко представить как конечную дробь либо бесконечную периодическую десятичную дробь.

Пример ,

Бесконечная десятичная дробь , это десятичная дробь, у которой после запятой есть бесконечное число цифр.

Числа, которые нельзя представить в виде , являются иррациональными числами .

Пример:

Всякое иррациональное число легко представить как бесконечную непериодическую десятичную дробь.

Пример ,

Рациональные и иррациональные числа создают множество действительных чисел. Всем действительным числам соответствует одна точка координатной прямой, которая называется числовая прямая .

Для числовых множеств используются обозначения:

  • N - множество натуральных чисел;
  • Z - множество целых чисел;
  • Q - множество рациональных чисел;
  • R - множество действительных чисел.

Теория бесконечных десятичных дробей.

Вещественное число определяется как бесконечная десятичная дробь , т.е.:

±a 0 ,a 1 a 2 …a n …

где ± есть один из символов + или −, знак числа,

a 0 — целое положительное число,

a 1 ,a 2 ,…a n ,… — последовательность десятичных знаков, т.е. элементов числового множества {0,1,…9}.

Бесконечную десятичную дробь можно объяснить как число, которое на числовой прямой находится между рациональными точками типа:

±a 0 ,a 1 a 2 …a n и ±(a 0 ,a 1 a 2 …a n +10 −n) для всех n=0,1,2,…

Сравнение вещественных чисел как бесконечных десятичных дробей происходит поразрядно. Например , предположим даны 2 положительны числа:

α =+a 0 ,a 1 a 2 …a n …

β =+b 0 ,b 1 b 2 …b n …

Если a 0 0, то α<β ; если a 0 >b 0 то α>β . Когда a 0 =b 0 переходим к сравнению следующего разряда. И т.д. Когда α≠β , значит после конечного количества шагов встретится первый разряд n , такой что a n ≠b n . Если a n n , то α<β ; если a n >b n то α>β .

Но при этом нудно обратить внимание на то, что число a 0 ,a 1 a 2 …a n (9)=a 0 ,a 1 a 2 …a n +10 −n . Поэтому если запись одного из сравниваемых чисел, начиная с некоторого разряда это периодическая десятичная дробь, у которой в периоде стоит 9, то её нужно заменить на эквивалентную запись, с нулем в периоде.

Арифметические операции с бесконечными десятичными дробями это непрерывное продолжение соответствующих операций с рациональными числами. Например , суммой вещественных чисел α и β является вещественное число α+β , которое удовлетворяет таким условиям:

a′,a′′,b′,b′′ Q(a′ α a′′) (b′ β b′′) (a′+b′ α + β a′′+b′′)

Аналогично определяет операция умножения бесконечных десятичных дробей.

error: