Чем отличаются прямые и косвенные измерения. Виды измерений. Смотреть что такое "Косвенное измерение" в других словарях

Классификацию видов измерений можно проводить по различным классификационным признакам, к которым можно отнести следующее:

Способ нахождения численного значения физической величины,

Число наблюдений,

Характер зависимости измеряемой величины от времени,

Число измеряемых мгновенных значений в заданном интервале времени,

Условия, определяющие точность результатов,

Способ выражения результатов измерения.

По способунахождения численного значения физической величины измерения подразделяются на следующие виды: прямые, косвенные , совокупные и совместные.

Прямым измерением называют измерение, при котором значение измеряемой величины находят непосредственно из опытных данных. Прямые измерения выполняются при помощи средств, предназначенных для измерения данных величин. Числовое значение измеряемой величины отсчитывается непосредственно по показанию измерительного прибора. Примеры прямых измерений: измерение тока ампер­метром; напряжения – вольтметром; массы - на рычажных весах и др.

Зависимость между измеряемой величиной X и результатом измерения Y при прямом измерении характеризуется уравнением:

т.е. значение измеряемой величины принимается равным получен­ному результату.

К сожалению, прямое измерение не всегда можно провести. Иногда нет под рукой соответствующего измерительного прибора или он неудовлетворителен по точности, или даже вообще ещё не создан. В этом случае приходится прибегать к косвенному измере­нию.

Косвенными измерениями называют та­кие измерения, при которых значение искомой величины находят на основании известной зависимости между этой величиной и величи­нами, подвергаемыми прямым измерениям.

При косвенных измерениях измеряют не собственно определяемую величину, а другие величины, функционально с ней связанные. Значение измеряемой косвенным путем величины X находят вычислением по фор-муле

X = F (Y 1 , Y 2 , … ,Y n ),

где Y 1 , Y 2 , … Y n – значения величин, полученных путем прямых измерений.

Примером косвенного измерения является определение электрического сопротивления с помощью амперметра и вольтметра. Здесь путем прямых измерений находят значения падения напряжения U на сопротивлении R и ток I через него, а искомое сопротивление R находят по формуле

R = U/I .

Операцию вычисления измеряемой величины может производить как человек, так и вычислительное устройство, помещенное в прибор.

Прямые и косвенные измерения в настоящее время широко использу­ются в практике и являются наиболее распространенными видами измерений.

Совокупные измерения – это производи­мые одновременно измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Например, для определения значений сопротивлений резисторов, соединенных треугольником (рис. 3.1), измеряют сопротивления на каждой паре вершин треугольника и получают систему уравнений:


Из решения этой системы уравнений получают значения сопротивлений

, , ,

Совместные измерения – это производимые одновременно измерения двух или нескольких не одноименных величин X 1 , X 2 ,…,X n , значения которых находят решением системы уравнений

F i (X 1 , X 2 , … ,X n ; Y i1 , Y i2 , … ,Y im ) = 0,

где i = 1, 2, …, m > n; Y i1 , Y i2 , … ,Y im – результаты прямых или косвенных измерений; X 1 , X 2 , … ,X n – значения искомых величин.

Например, индуктивность катушки

L = L 0 × (1 + w 2 × C× L 0 ),

где L 0 – индуктивность при частоте w =2× p × f стремящейся к нулю; С – межвитковая емкость. Значения L 0 и С нельзя найти прямыми или косвенными измерениями. Поэтому в простейшем случае измеряют L 1 при w 1 , а затем L 2 при w 2 и составляют систему уравнений:

L 1 = L 0 × (1 + w 1 2 × C× L 0 );

L 2 = L 0 × (1 + w 2 2 × C× L 0 ),

решая которую, находят искомые значения индуктивности L 0 и емкости С

; .

Совокупные и совместные измерения – это обобщение косвен­ных измерений на случай нескольких величин.

Для повышения точности совокупных и совместных измерений обеспечивают условие m ³ n, т.е. число уравнений должно быть больше или равно числу искомых величин. Получающуюся при этом несовместную систему уравнений решают методом наименьших квадратов.

По числу наблюдений измерения подразделяются:

На обыкновенные измерения – измерения, выполняемые с однократным наблюдением;

- статистические измерения – измерения с многократными на-блюдениями.

Наблюдение при измерении – экспериментальная операция, выполняемая в процессе измерений, в резуль­тате которой получают одно значение из группы значе­ний величин, подлежащих совместной обработке для по­лучения результатов измерений.

Результат наблюдения – результат величины, полу­чаемый при отдельном наблюдении.

По характеру зависимости измеряе­мой величины от времени измерения разделяются:

На статические , при которых измеряемая величина оста­ется постоянной во времени в процессе измерения;

- динамические , при которых измеряемая величина изменяется в процессе измерения и является непостоянной во вре­мени.

При динамических измерениях для получения результата измерения необходимо учитывать это изменение. А для оценки точности результатов динамических измерений необходимо знание динамических свойств средств измерений.

По числу измеряемых мгновенных значений в заданном интервале времениизмерения подразделяются на дискретные и непрерывные (аналоговые).

Дискретные измерения – измерения, при которых на заданном интервале времени число измеряемых мгновенных значений конечно.

Непрерывные (аналоговые) измерения – измерения, при которых на заданном интервале времени число измеряемых мгновенных значений бесконечно.

По условиям, определяющим точность результатов , измерения бывают:

- максимально воз­можной точности , достигаемой при существующем уров­не техники;

- контрольно-поверочные , погрешность кото­рых не должна превышать некоторое заданное значение;

- технические измерения , в которых погрешность результата опреде­ляется характеристиками средств измерений.

По способу выражения результатов различают абсолютные и относительные измерения.

Абсолютные измерения – измерения, основанные на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Относительные измерения – измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.

Методы измерений и их классификация

Все измерения могут производиться различными методами. Различают два основных метода измерений: метод непосредственной оценки и методы сравнения c мерой.

Метод непосредственной оценки характеризуется тем, что значение измеряемой величины опреде­ляется непосредственно по отсчетному устройству измерительного прибора, заранее градуированного в единицах измеряемой величины. Этот метод является наиболее простым и поэтому широко применяется при измерении различных величин, например: измерение веса тела на пружинных весах, силы электрического тока стрелочным ампермет­ром, разности фаз цифровым фазометром и т.д.

Функциональная схема измерения методом непосредственной оценки приведена на рис. 3.2.

Мерой в приборах непосредственной оценки слу­жат деления шкалы отсчетного устройства. Они поставлены не произвольно, а на основании градуировки прибора. Таким образом, деления шкалы отсчетного устройс­тва являются как бы заменителем (²отпечатком²) значения реаль­ной физической величины и поэтому могут быть использованы не­посредственно для нахождения значений измеряемых прибором величин. Следовательно, все приборы непосредственной оценки факти­чески реализуют принцип сравнения с физическими величинами. Но это сравнение разновременное и осуществляется опосредованно , с помощью промежуточного средства – делений шкалы отсчетного устройства.

Методы сравнения с мерой методы измерений, в которых измеряемую величину сравнивают с величиной, воспроизводимой мерой. Эти методы по сравнению с методом непосредственной оценки более точны, но немного сложнее. Группа методов сравнения с мерой включает в себя следующие методы: метод противопоставления, нулевой метод, дифференциальный метод, метод совпадения и метод замещения.

Определяющим признаком методов сравнения является то, что в процессе измерения происходит сравнение двух однородных величин – известной (воспроизводимой мерой) и измеряемой. При измерениях методами сравнения используются реальные физи­ческие меры, а не их ²отпечатки².

Сравнение может быть одновременным и разновременным. При одновременном сравнении мера и измеряемая величина воздействуют на измерительный при­бор одновременно, а при разновременном – воздействие измеряемой величины и меры на измерительный прибор раз­несено во времени. Кроме того, сравнение может быть непосредственным и опосредован­ным .

При непосредственном сравнении измеряемая величина и мера непосредст­венно воздействуют на устройство сравнения, а при опосредован­ном сравнении – через другие величины, однозначно связанные с известной и измеряемой величинами.

Одновременное сравнение осуществляется обычно методами противопоставления , нулевым, дифференциа­льным и совпадения , а разновременное - методом замещения .

ЛЕКЦИЯ 4

МЕТОДЫ ИЗМЕРЕНИЙ

Косвенное измерение

Прямое измерение

Прямое измерение - это измерение, при котором искомое значение физической величины находится непосредственно из опытных данных в результате сравнения измеряемой величины с эталонами.

  • измерение длины линейкой .
  • измерение электрического напряжения вольтметром .

Косвенное измерение

Косвенное измерение - измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивление резистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений.

Совместное измерение

Совместное измерение - одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры . При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

Совокупное измерение

Совокупное измерение - одновременное измерение нескольких одноименных величин, при котором искомые значения величин находятся решением системы уравнений, состоящих из результирующих прямых измерений различных сочетаний этих величин.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

Wikimedia Foundation . 2010 .

Смотреть что такое "Косвенное измерение" в других словарях:

    косвенное измерение - Определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Пример. Определение плотности D тела цилиндрической формы по результатам прямых… … Справочник технического переводчика

    косвенное измерение - 3.6 косвенное измерение (indirect measurement): Измерение, посредством которого отдельные компоненты и/или группы компонентов, которые не присутствуют в рабочей эталонной газовой смеси, определяются, используя относительные коэффициенты… …

    косвенное измерение - netiesioginis matavimas statusas T sritis automatika atitikmenys: angl. indirect measurement vok. indirekte Messung, f; mittelbare Messung, f rus. косвенное измерение, n pranc. mesurage indirect, m; mesure indirecte, f … Automatikos terminų žodynas

    косвенное измерение - netiesioginis matavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydžio vertės radimas netiesioginiu būdu, kai ieškomoji vertė randama naudojant kitų dydžių tiesioginių matavimų rezultatus. pavyzdys(iai) Vienalytės medžiagos… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    косвенное измерение - netiesioginis matavimas statusas T sritis fizika atitikmenys: angl. indirect measurement vok. indirekte Messung, f rus. косвенное измерение, n pranc. mesure indirecte, f … Fizikos terminų žodynas

    Косвенное измерение - 1. Измерение, при котором искомое значение величины определяют, исходя из результатов прямых измерений других величин, связанных с искомой величиной известной функциональной зависимостью Употребляется в документе: ОСТ 45.159 2000 Отраслевая… … Телекоммуникационный словарь

    Косвенное измерение (вычисление) отдельных комплексных показателей функционирования ТОУ - Косвенное автоматическое измерение (вычисление) выполняется путем преобразования совокупности частных измеряемых величин в результирующую (комплексную) измеряемую величину с помощью функциональных преобразований и последующего прямого измерения… … Словарь-справочник терминов нормативно-технической документации

    Косвенное измерение (вычисление) отдельных комплексных показателей Функционирования ТОУ - Кос во см ос автоматическое измерение (вычисление) выполняется путем преобразования совокупности частных измеряемых величии в результирукчцук» (комплексную) измеряем)» величину с помощью функциональных преобразований и последующего прямого… … Словарь-справочник терминов нормативно-технической документации

    Измерение совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением… … Википедия

    У этого термина существуют и другие значения, см. Измерение (значения). Измерение совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом… … Википедия

Косвенные измерения отличаются от прямых тем, что искомое значение величины определяют на основании результатов прямых измерений других физ. величин, функционально связанных с искомой величиной. Другими словами, искомое значение ФВ устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью. Уравнение косвенного измерения: у = f(х 1 , х 2 ,... ,х п), где х i - i – ый результат прямого измерения. Примеры: В современных микропроцессорных измер-х приборах очень часто вычисления искомой измеряемой величины производятся "внутри" прибора. В этом случае результат измерения определяется способом, характерным для прямых измерений, и нет необходимости и возможности отдельного учета методической погрешности расчета. Она входит в погрешность измерительного прибора. Измерения, проводимые средствами измерений такого рода, относятся к прямым. К косвенным относятся только такие измерения, при которых расчет осуществляется вручную или автоматически, но после получения результатов прямых измерений. При этом может быть учтена отдельно погрешность расчета. Пример такого случая - измерительные системы, для которых нормированы метрологические характеристики их компонентов по отдельности. Суммарная погрешность измерений рассчитывается по нормированным метрологическим хар-кам всех компонентов системы. Совокупные измерения сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

При совокупных измерениях значения набора одноименных величин Q 1 …… Q k ., как правило, определяют путем измерений сумм или разностей этих величин в различных сочетаниях:

где коэффициенты c ij принимают значения ±1 или 0.

Таким образом, речь идет о проводимых одновременно измерениях нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях различных сочетаний этих величин.

Совместные измерения - это одновременные (прямые или косвенные) измерения двух или нескольких неоднородных (не одноименных) физ. величин для определения функциональной зависимости между ними. По сути, совокупные измерения ничем не отличаются от совместных измерений, за исключением того, что в первом случае измерения относятся к одноименным величинам, а во втором – к неодноименным. Косвенные, совокупные и совместные измерения объединяются одним принципиально важным общим свойством: их результаты определяются расчетом по известным функциональным зависимостям между измеряемыми величинами и величинами, подвергаемыми прямым измерениям.

Таким образом, еще раз подчеркнем, что различие между косвенными, совокупными и совместными измерениями заключается только в виде функц-й зависимости, используемой при расчетах. При косвенных измерениях она выражается одним уравнением в явном виде, при совместных и совокупных - системой неявных уравнений.


По способу получения значений физической величины измерения могут быть прямыми, косвенными, совокупными и совместными, каждое из которых проводится абсолютным и относительным методами (см. п. 3.2.).

Рис. 3. Классификация видов измерений

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Примерами прямых измерений являются определения длины с помощью линейных мер или температуры термометром. Прямые измерения составляют основу более сложных косвенных измерений.

Косвенное измерение – измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, полученными прямыми измерениями, например, тригонометрические методы измерения углов, при которых острый угол прямого треугольника определяют по измеренным длинам катетов и гипотенузы или измерение среднего диаметра резьбы методом трех проволочек или, мощности электрической цепи по измеренным вольтметром напряжению и амперметром силе тока, используя известную зависимость. Косвенные измерения в ряде случаев позволяют получить более точные результаты, чем прямые измерения. Например, погрешности прямых измерений углов угломерами на порядок выше погрешностей косвенных измерений углов с помощью синусных линеек.

Совместными называют производимые одновременно измерения двух или нескольких разноименных величин. Целью этих измерений является нахождение функциональной связи между величинами.

Пример 1. Построение градуировочной характеристики y = f(x) измерительного преобразователя, когда одновременно измеряются наборы значений:

X 1 , X 2 , X 3 , …, X i , …,X n

Y 1 , Y 2 , Y 3 , …, Y i , …,Y n

Пример 2 . Определение температурного коэффициента сопротивления путем одновременного измерения сопротивления R и температуры t , а затем определение зависимости a(t) = DR/Dt :

R 1 , R 2 , …, R i , …, R n

t 1 , t 2 , …, t i , …, t n

Совокупные измерения осуществляются путем одновременного измерения нескольких одноименных величин, при которых искомое значение находят решением системы уравнений, получаемых в результате прямых измерений различных сочетаний этих величин.

Пример: значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь.



Имеются гири массами m 1 , m 2 , m 3 .

Масса первой гири определится следующим образом:

Масса второй гири определится как разность массы первой и второй гирь М 1,2 и измеренной массы первой гири :

Масса третьей гири определится как разность массы первой, второй и третьей гирь (M 1,2,3 ) и измеренных масс первой и второй гирь ():

Часто именно этим путем добиваются повышения точности результатов измерения.

Совокупные измерения отличаются от совместных только тем, что при совокупных измерениях одновременно измеряют несколько одноименных величин, а при совместных – разноименных.

Совокупные и совместные измерения часто применяют при измерении различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины бывают статические, динамические и статистические измерения.

Статические – измерения неизменных во времени ФВ например, измерение длины детали при нормальной температуре.

Динамические – измерения изменяющихся во времени ФВ, например измерение расстояния до уровня земли со снижающегося самолета, или напряжение в сети переменного тока.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

По точности существуют измерения с максимально возможной точностью, контрольно-поверочные и технические.

Измерения с максимально возможной точностью – это эталонные измерения, связанные с точностью воспроизведения единиц физической величины, измерения физических констант. Эти измерения определяются существующим уровнем техники.

Контрольно–поверочные – измерения, погрешность которых не должна превышать некоторое заданное значение. К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники, измерения заводскими измерительными лабораториями и другие, осуществляемые при помощи средств и методик, гарантирующих погрешность, не превышающую заранее заданного значения.

Технические измерения – измерения, в которых погрешность результата определяется характеристиками средств измерений (СИ). Это наиболее массовый вид измерений, проводится с помощью рабочих СИ, погрешность которых заранее известна и считается достаточной для выполнения данной практической задачи.

Измерения по способу выражения результатов измерений могут быть также абсолютными и относительными.

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин, а также на использовании значений физических констант. При линейных и угловых абсолютных измерениях, как правило, находят одну физическую величину, например, диаметр вала штангенциркулем. В некоторых случаях значения измеряемой величины определяют непосредственным отсчетом по шкале прибора, отградуированного в единицах измерения.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы. При относительном методе измерений производится оценка значения отклонения измеряемой величины относительно размера установочной меры или образца. Примером является измерение на оптиметре или миниметре.

По числу измерений различают однократные и многократные измерения.

Однократные измерения – это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

Приведенные виды измерений включают различные методы, т.е. способы решения измерительной задачи с теоретическим обоснованием по принятой методике.

Расчет погрешностей при прямых и косвенных измерениях

Под измерением понимают сравнение измеряемой величины с другой величиной, принятой за единицу измерения . Измерения выполняются опытным путем с помощью специальных технических средств.

Прямыми измерениями называются измерения, результат которых получается непосредственно из опытных данных (например, измерение длины линейкой, времени – секундомером, температуры – термометром). Косвенными измерениями называются измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, значения которых получают в процессе прямых измерений (например, определение скорости по пройденному пути и времени https://pandia.ru/text/78/464/images/image002_23.png" width="65" height="21 src=">).

Всякое измерение, как бы оно тщательно не было выполнено, обязательно сопровождается погрешностью (ошибкой) – отклонением результата измерений от истинного значения измеряемой величины.

Систематические погрешности – это погрешности, величина которых одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов, в одних и тех же условиях. Систематические погрешности происходят:

В результате несовершенства приборов, используемых при измерениях (например, стрелка амперметра может быть отклонена от нулевого деления в отсутствие тока; у коромысла весов могут быть неравные плечи и др.);

В результате недостаточно полной разработки теории метода измерений, т. е. метод измерений содержит в себе источник ошибок (например, возникает ошибка, когда в калориметрических работах не учитывается потеря тепла в окружающую среду или когда взвешивание на аналитических весах производится без учета выталкивающей силы воздуха);

В результате того, что не учитывается изменение условий опыта (например, при долговременном прохождении тока по цепи в результате теплового действия тока меняются электрические параметры цепи).

Систематические погрешности можно исключить, если изучить особенности приборов, полнее разработать теорию опыта и на основе этого вносить поправки в результаты измерений.

Случайные погрешности – это погрешности, величина которых различна даже для измерений, выполненных одинаковым образом. Причины их кроются как в несовершенстве наших органов чувств, так и во многих других обстоятельствах, сопровождающих измерения, и которые нельзя учесть заранее (случайные ошибки возникают, например, если равенство освещенностей полей фотометра устанавливается на глаз; если момент максимального отклонения математического маятника определяется на глаз; при нахождении момента звукового резонанса на слух; при взвешивании на аналитических весах, если колебания пола и стен передаются весам и т. д.).

Случайных погрешностей избежать нельзя. Их возникновение проявляется в том, что при повторении измерений одной и той же величины с одинаковой тщательностью получаются числовые результаты, отличающиеся друг от друга. Поэтому, если при повторении измерений получались одинаковые значения, то это указывает не на отсутствие случайных погрешностей, а на недостаточную чувствительность метода измерений.

Случайные погрешности изменяют результат как в одну, так и в другую сторону от истинного значения, поэтому, чтобы уменьшить влияние случайных ошибок на результат измерений, обычно многократно повторяют измерения и берут среднее арифметическое всех результатов измерений.

Заведомо неверные результаты - промахи возникают вследствие нарушения основных условий измерения, в результате невнимательности или небрежности экспериментатора. Например, при плохом освещении вместо “3” записывают “8”; из-за того, что экспериментатора отвлекают, он может сбиться при подсчете количества колебаний маятника; из-за небрежности или невнимательности он может перепутать массы грузов при определении жесткости пружины и т. д. Внешним признаком промаха является резкое отличие результата по величине от результатов остальных измерений. При обнаружении промаха результат измерения следует сразу отбросить, а само измерение повторить. Выявлению промахов способствует также сравнение результатов измерений, полученных разными экспериментаторами.

Измерить физическую величину это значит найти доверительный интервал , в котором лежит ее истинное значение https://pandia.ru/text/78/464/images/image005_14.png" width="16 height=21" height="21">..png" width="21" height="17 src=">.png" width="31" height="21 src="> случаев истинное значение измеряемой величины попадет в доверительный интервал. Величина выражается или в долях единицы, или в процентах. При большинстве измерений ограничиваются доверительной вероятностью 0,9 или 0,95. Иногда, когда требуется чрезвычайно высокая степень надежности, задают доверительную вероятность 0,999. Наряду с доверительной вероятностью часто пользуются уровнем значимости , который задает вероятность того, истинное значение не попадает в доверительный интервал. Результат измерения представляют в виде

где https://pandia.ru/text/78/464/images/image012_8.png" width="23" height="19"> – абсолютная погрешность. Таким образом, границы интервала , https://pandia.ru/text/78/464/images/image005_14.png" width="16" height="21"> лежит в пределах этого интервала.

Для того чтобы найти и , выполняют серию однократных измерений. Рассмотрим конкретный пример..png" width="71" height="23 src=">; ; https://pandia.ru/text/78/464/images/image019_5.png" width="72" height="23">.png" width="72" height="24">. Значения могут и повторяться, как значения и https://pandia.ru/text/78/464/images/image024_4.png" width="48 height=15" height="15">.png" width="52" height="21">. Соответственно уровень значимости .

Среднее значение измеряемой величины

Измерительный прибор также вносит свой вклад в погрешность измерений. Эта погрешность обусловлена конструкцией прибора (трением в оси стрелочного прибора, округлением, производимым цифровым или дискретным стрелочным прибором и пр.). По своей природе это систематическая ошибка, но ни величина, ни знак ее для данного конкретного прибора неизвестны. Приборную погрешность оценивают в процессе испытаний большой серии однотипных приборов.

Нормированный ряд классов точности измерительных приборов включает такие значения: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности прибора равен выраженной в процентах относительной ошибке прибора по отношению к полному диапазону шкалы. Паспортная погрешность прибора

error: