Несобственные интегралы. Примеры решений. Как вычислить несобственный интеграл и выяснить его сходимость Несобственные интегралы 1 и 2 рода примеры

Определенный интеграл

\[ I=\int_a^bf(x)dx \]

был построен в предположении, что числа $a,\,b$ конечны и $f(x)$ - непрерывная функция. Если одно из этих предположений нарушается, говорят о несобственных интегралах.

10.1 Несобственные интегралы 1 рода

Несобственный интеграл 1 рода возникает, когда по крайней мере одно из чисел $a,\,b$ бесконечно.

10.1.1 Определение и основные свойства

Рассмотрим сначала ситуацию, когда нижний предел интегрирования конечен, а верхний равен $+\infty$, другие варианты обсудим несколько позднее. Для $f(x)$, непрерывной при всех интересующих нас $x$, рассмотрим интеграл

\begin{equation} I=\int _a^{+\infty}f(x)dx. \quad(19) \label{inf1} \end{equation}

Прежде всего надо установить смысл этого выражения. Для этого введем функцию

\[ I(N)=\int _a^{N}f(x)dx \]

и рассмотрим ее поведение при $N\rightarrow +\infty$.

Определение. Пусть существует конечный предел

\[ A=\lim_{N \rightarrow +\infty}I(N)=\lim_{N \rightarrow +\infty}\int _a^{N}f(x)dx. \]

Тогда говорят, что несобственный интеграл 1 рода (19) является сходящимся и ему приписывают значение $A$, саму функцию называют интегрируемой на интервале $\left[ a, \, +\infty \right)$. Если же указанного предела не существует или он равен $\pm \infty$, то говорят, что интеграл (19) расходится.

Рассмотрим интеграл

\[ I=\int _0^{+\infty} \frac{dx}{1+x^2}. \]

\[ I(N)=\int _0^{N} \frac{dx}{1+x^2}. \]

В данном случае известна первообразная подинтегральной функции, так что

\[ I(N)=\int _0^{N} \frac{dx}{1+x^2}=arctgx|_0^{N}=arctgN. \]

Известно, что $arctg N \rightarrow \pi /2 $ при $N \rightarrow +\infty$. Таким образом, $I(N)$ имеет конечный предел, наш несобственный интеграл сходится и равен $\pi /2$.

Сходящиеся несобственные интегралы 1 рода обладают всеми стандартными свойствами обычных определенных интегралов.

1. Если $f(x)$, $g(x)$ интегрируемы на интервале $\left[ a, \, +\infty \right)$, то их сумма $f(x)+g(x)$ также интегрируема на этом интервале, причем \[ \int _a^{+\infty}\left(f(x)+g(x)\right)dx=\int _a^{+\infty}f(x)dx+\int _a^{+\infty}g(x)dx. \] 2. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, то для любой константы $C$ функция $C\cdot f(x)$ также интегрируема на этом интервале, причем \[ \int _a^{+\infty}C\cdot f(x)dx=C \cdot \int _a^{+\infty}f(x)dx. \] 3. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, причем на этом интервале $f(x)>0$, то \[ \int _a^{+\infty} f(x)dx\,>\,0. \] 4. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, то для любого $b>a$ интеграл \[ \int _b^{+\infty} f(x)dx \] сходится, причем \[ \int _a^{+\infty}f(x)dx=\int _a^{b} f(x)dx+\int _b^{+\infty} f(x)dx \] (аддитивность интеграла по интервалу).

Справедливы также формулы замены переменной, интегрирования по частям и т.д. (с естественными оговорками).

Рассмотрим интеграл

\begin{equation} I=\int _1^{+\infty}\frac{1}{x^k}\,dx. \quad (20) \label{mod} \end{equation}

Введем функцию

\[ I(N)=\int _1^{N}\frac{1}{x^k}\,dx. \]

В данном случае первообразная известна, так что

\[ I(N)=\int _1^{N}\frac{1}{x^k}\,dx\,=\frac{x^{1-k}}{1-k}|_1^N= \frac{N^{1-k}}{1-k}-\frac{1}{1-k} \]

при $k \neq 1$,

\[ I(N)=\int _1^{N}\frac{1}{x}\,dx\,=lnx|_1^N= lnN \]

при $k = 1$. Рассматривая поведение при $N \rightarrow +\infty$, приходим к выводу, что интеграл (20) сходится при $k>1$, а при $k \leq 1$ - расходится.

Рассмотрим теперь вариант, когда нижний предел интегрирования равен $-\infty$, а верхний конечен, т.е. рассмотрим интегралы

\[ I=\int _{-\infty}^af(x)dx. \]

Однако этот вариант можно свести к предыдущему, если сделать замену переменных $x=-s$ и поменять затем пределы интегрирования местами, так что

\[ I=\int _{-a}^{+\infty}g(s)ds, \]

$g(s)=f(-s)$. Рассмотрим теперь случай, когда имеется два бесконечных предела, т.е. интеграл

\begin{equation} I=\int _{-\infty}^{+\infty}f(x)dx, \quad (21) \label{intr} \end{equation}

причем $f(x)$ непрерывна при всех $x \in \mathbb{R}$. Разобъем интервал на две части: возьмем $c \in \mathbb{R}$, и рассмотрим два интеграла,

\[ I_1=\int _{-\infty}^{c}f(x)dx, \quad I_2=\int _{c}^{+\infty}f(x)dx. \]

Определение. Если оба интеграла $I_1$, $I_2$ сходятся, то интеграл (21) называется сходящимся, ему приписывают значение $I=I_1+I_2$ (в соответствии с аддитивностью по интервалу). Если хотя бы один из интегралов $I_1$, $I_2$ расходится, интеграл (21) называется расходящимся.

Можно доказать, что сходимость интеграла (21) не зависит от выбора точки $c$.

Несобственные интегралы 1 рода с интервалами интегирования $\left(-\infty, \, c \right]$ или $(-\infty, \, +\infty)$ также обладают всеми стандартными свойствами определенных интегралов (с соответствующей переформулировкой, учитывающей выбор интервал интегрирования).

10.1.2 Признаки сходимости несобственных интегралов 1 рода

Теорема (первый признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны при $x>a$, причем $0 a$. Тогда

1. Если интеграл \[ \int _a^{+\infty}g(x)dx \] сходится, то сходится и интеграл \[ \int _a^{+\infty}f(x)dx. \] 2. Если интеграл \[ \int _a^{+\infty}f(x)dx \] расходится, то расходится и интеграл \[ \int _a^{+\infty}g(x)dx. \]

Теорема (второй признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны и положительны при $x>a$, причем существует конечный предел

\[ \theta = \lim_{x \rightarrow +\infty} \frac{f(x)}{g(x)}, \quad \theta \neq 0, \, +\infty. \]

Тогда интегралы

\[ \int _a^{+\infty}f(x)dx, \quad \int _a^{+\infty}g(x)dx \]

сходятся или расходятся одновременно.

Рассмотрим интеграл

\[ I=\int _1^{+\infty}\frac{1}{x+\sin x}\,dx. \]

Подинтегральное выражение - положительная функция на интервале интегрирования. Далее, при $x \rightarrow +\infty$ имеем:

$\sin x$ является "малой" поправкой в знаменателе. Точнее, если взять $f(x)=1/(x+\sin x)$, \, $g(x)=1/x$, то

\[ \lim _{x \rightarrow +\infty}\frac{f(x)}{g(x)}=\lim _{x \rightarrow +\infty}\frac{x}{x+\sin x}=1. \]

Применяя второй признак сравнения, приходим к выводу, что наш интеграл сходится или расходится одновременно с интегралом

\[ \int _1^{+\infty}\frac{1}{x}\,dx . \]

Как было показано в предыдущем примере, этот интеграл расходится ($k=1$). Следовательно, исходный интеграл расходится.

Вычислить несобственный интеграл или установить его сходимость (расходимость).

1. \[ \int _{0}^{+\infty}e^{-ax}\,dx. \] 2. \[ \int _{0}^{+\infty}xe^{-x^2}\,dx. \] 3. \[ \int _{-\infty}^{+\infty}\frac{2xdx}{x^2+1}. \] 4. \[ \int _{0}^{+\infty}\frac{xdx}{(x+2)^3}. \] 5. \[ \int _{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}. \] 6. \[ \int _{1}^{+\infty}\frac{lnx}{x^2}\,dx. \] 7. \[ \int _{1}^{+\infty}\frac{dx}{(1+x)\sqrt{x}}. \] 8. \[ \int _{0}^{+\infty}e^{-\sqrt{x}}\,dx. \] 9. \[ \int _{0}^{+\infty}e^{-ax}\cos x\,dx. \] 10. \[ \int _{0}^{+\infty}\frac{xdx}{x^3+1}. \]

Несобственные интегралы первого рода. По сути это тот же определённый интеграл, но в случаях, когда интегралы имеют бесконечный верхний или нижний пределы интегрирования, или оба предела интегрирования бесконечны.

Несобственные интегралы второго рода. По сути это тот же определённый интеграл, но в случаях, когда интеграл берётся от неограниченных функций, подынтегральная функция в конечном числе точек конечного отрезка интегрирования не имеет, обращаясь в бесконечность.

Для сравнения. При введении понятия определённого интеграла предполагалось, что функция f (x ) непрерывна на отрезке [a , b ], а отрезок интегрирования является конечным, то есть ограничен числами, а не бесконечностью. Некоторые задачи приводят к необходимости отказаться от этих ограничений. Так появляются несобственные интегралы.

Геометрический смысл несобственного интеграла выясняется довольно просто. В случае, когда график функции y = f (x ) находится выше оси Ox , определённый интеграл выражает площадь криволинейной трапеции, ограниченной кривой y = f (x ) , осью абсцисс и ординатами x = a , x = b . В свою очередь несобственный интеграл выражает площадь неограниченной (бесконечной) криволинейной трапеции, заключённой между линиями y = f (x ) (на рисунке ниже - красного цвета), x = a и осью абсцисс.

Аналогичным образом определяются несобственные интегралы и для других бесконечных интервалов:

Площадь бесконечной криволинейной трапеции может быть конечным числом и в этом случае несобственный интеграл называется сходящимся. Площадь может быть и бесконечностью и в этом случае несобственный интеграл называется расходящимся.

Использование предела интеграла вместо самого несобственного интеграла. Для того, чтобы вычислить несобственный интеграл, нужно использовать предел определённого интеграла. Если этот предел существует и конечен (не равен бесконечности), то несобственный интеграл называется сходящимся, а в противном случае - расходящимся. К чему стремится переменная под знаком предела, зависит от того, имеем мы дело с несобственным интегралом первого рода или второго рода. Узнаем об этом сейчас же.

Несобственные интегралы первого рода - с бесконечными пределами и их сходимость

Несобственные интегралы с бесконечным верхним пределом

Итак, запись несобственного интеграла как отличается от обычного определённого интеграла тем, что верхний предел интегрирования бесконечен.

Определение. Несобственным интегралом с бесконечным верхним пределом интегрирования от непрерывной функции f (x ) на промежутке от a до называется предел интеграла этой функции с верхним пределом интегрирования b и нижним пределом интегрирования a при условии, что верхний предел интегрирования неограниченно растёт , т.е.

.

Если этот предел существует и равен некоторому числу, а не бесконечности, то несобственный интеграл называется сходящимся , а число, которому равен предел, принимается за его значение. В противном случае несобственный интеграл называется расходящимся и ему не приписывается никакого значения.

Пример 1. Вычислить несобственный интеграл (если он сходится).

Решение. На основании определения несобственного интеграла находим

Так как предел существует и равен 1, то и данный несобственный интеграл сходится и равен 1.

В следующем примере подынтегральная функция почти как в примере 1, только степень икса - не двойка, а буква альфа, а задача состоит в исследовании несобственного интеграла на сходимость. То есть предстоит ответить на вопрос: при каких значениях альфы данный несобственный интеграл сходится, а при каких расходится?

Пример 2. Исследовать на сходимость несобственный интеграл (нижний предел интегрирования больше нуля).

Решение. Предположим сначала, что , тогда

В полученном выражении перейдём к пределу при :

Нетрудно видеть, что предел в правой части существует и равен нулю, когда , то есть , и не существует, когда , то есть .

В первом случае, то есть при имеет место . Если , то и не существует.

Вывод нашего исследования следующий: данный несобственный интеграл сходится при и расходится при .

Применяя к изучаемому виду несобственного интеграла формулу Ньютона-Лейбница , можно вывести следующую очень похожую на неё формулу:

.

Это обобщённая формула Ньютона-Лейбница.

Пример 3. Вычислить несобственный интеграл (если он сходится).

Предел этого интеграла существует:

Второй интеграл, составляющий сумму, выражающую исходный интеграл:

Предел этого интеграла также существует:

.

Находим сумму двух интегралов, являющуюся и значением исходного несобственного интеграла с двумя бесконечными пределами:

Несобственные интегралы второго рода - от неограниченных функций и их сходимость

Пусть функция f (x ) задана на отрезке от a до b и неограниченна на нём. Предположим, что функция обращается в бесконечность в точке b , в то время как во всех остальных точках отрезка она непрерывна.

Определение. Несобственным интегралом функции f (x ) на отрезке от a до b называется предел интеграла этой функции с верхним пределом интегрирования c , если при стремлении c к b функция неограниченно возрастает, а в точке x = b функция не определена , т.е.

.

Если этот предел существует, то несобственный интеграл второго рода называется сходящимся, в противном случае - расходящимся.

Используя формулу Ньютона-Лейбница, выводим.

Если подинтегральная функция имеет на (конечном) интервале интегрирования разрыв второго рода, говорят о несобственном интеграле второго рода.

10.2.1 Определение и основные свойства

Обозначим интервал интегрирования $\left[ a, \, b \right ]$, оба этих числа ниже полагаются конечными. Если имеется всего 1 разрыв, он может находиться или в точке $a$, или в точке $b$, или внутри интервала $(a,\,b)$. Рассмотрим сначала случай, когда разрыв второго рода имеется в точке $a$, а в остальных точках подинтегральная функция непрерывна. Итак, мы обсуждаем интеграл

\begin{equation} I=\int _a^b f(x)\,dx, (22) \label{intr2} \end{equation}

причем $f(x) \rightarrow \infty $, когда $x \rightarrow a+0$. Как и ранее, прежде всего следует придать смысл этому выражению. Для этого рассмотрим интеграл

\[ I(\epsilon)=\int _{a+\epsilon}^b f(x)\,dx. \]

Определение. Пусть существует конечный предел

\[ A=\lim _{\epsilon \rightarrow +0}I(\epsilon)=\lim _{\epsilon \rightarrow +0}\int _{a+\epsilon}^b f(x)\,dx. \]

Тогда говорят, что несобственный интеграл второго рода (22) сходится, и ему приписывают значение $A$, саму функцию $f(x)$ называют интегрируемой на интервале $\left[ a, \, b\right]$.

Рассмотрим интеграл

\[ I=\int ^1_0\frac{dx}{\sqrt{x}}. \]

Подинтегральная функция $1/\sqrt{x}$ при $x \rightarrow +0$ имеет бесконечный предел, так что в точке $x=0$ она имеет разрыв второго рода. Положим

\[ I(\epsilon)=\int ^1_{\epsilon }\frac{dx}{\sqrt{x}}\,. \]

В данном случае первообразная известна,

\[ I(\epsilon)=\int ^1_{\epsilon }\frac{dx}{\sqrt{x}}=2\sqrt{x}|^1_{\epsilon }=2(1-\sqrt{\epsilon })\rightarrow 2 \]

при $\epsilon \rightarrow +0$. Таким образом, исходный интеграл является сходящимся несобственным интегралом второго рода, причем он равен 2.

Рассмотрим вариант, когда разрыв второго рода подинтегральной функции имеется на верхнем пределе интервала интегрирования. Этот случай можно свести к предыдущему, сделав замену переменной $x=-t$ и затем переставив пределы интегрирования.

Рассмотрим вариант, когда разрыв второго рода у подинтегральной функции имеется внутри интервала интегрирования, в точке $c \in (a,\,b)$. В данном случае исходный интеграл

\begin{equation} I=\int _a^bf(x)\,dx (23) \label{intr3} \end{equation}

представляют в виде суммы

\[ I=I_1+I_2, \quad I_1=\int _a^cf(x)\,dx +\int _c^df(x)\,dx. \]

Определение. Если оба интеграла $I_1, \, I_2$ сходятся, то несобственный интеграл (23) называют сходящимся и ему приписывают значение, равное сумме интегралов $I_1, \, I_2$, функцию $f(x)$ называют интегрируемой на интервале $\left[ a, \, b\right]$. Если хотя бы один из интегралов $I_1,\, I_2$ является расходящимся, несобственный интеграл (23) называют расходящимся.

Сходящиеся несобственные интегралы 2 рода обладают всеми стандартными свойствами обычных определенных интегралов.

1. Если $f(x)$, $g(x)$ интегрируемы на интервале $\left[ a, \,b \right ]$, то их сумма $f(x)+g(x)$ также интегрируема на этом интервале, причем \[ \int _a^{b}\left(f(x)+g(x)\right)dx=\int _a^{b}f(x)dx+\int _a^{b}g(x)dx. \] 2. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, то для любой константы $C$ функция $C\cdot f(x)$ также интегрируема на этом интервале, причем \[ \int _a^{b}C\cdot f(x)dx=C \cdot \int _a^{b}f(x)dx. \] 3. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, причем на этом интервале $f(x)>0$, то \[ \int _a^{b} f(x)dx\,>\,0. \] 4. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, то для любого $c\in (a, \,b)$ интегралы \[ \int _a^{c} f(x)dx, \quad \int _c^{b} f(x)dx \] тоже сходятся, причем \[ \int _a^{b}f(x)dx=\int _a^{c} f(x)dx+\int _c^{b} f(x)dx \] (аддитивность интеграла по интервалу).

Рассмотрим интеграл

\begin{equation} I=\int _0^{1}\frac{1}{x^k}\,dx. (24) \label{mod2} \end{equation}

Если $k>0$, подинтегральная функция стремится к $\infty$ при $x \rightarrow +0$, так что интеграл - несобственный второго рода. Введем функцию

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x^k}\,dx. \]

В данном случае первообразная известна, так что

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x^k}\,dx\,=\frac{x^{1-k}}{1-k}|_{\epsilon}^1= \frac{1}{1-k}-\frac{\epsilon ^{1-k}}{1-k}. \]

при $k \neq 1$,

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x}\,dx\,=lnx|_{\epsilon}^1= -ln \epsilon. \]

при $k = 1$. Рассматривая поведение при $\epsilon \rightarrow +0$, приходим к выводу, что интеграл (20) сходится при $k

10.2.2 Признаки сходимости несобственных интегралов 2 рода

Теорема (первый признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны при $x\in (a,\,b)$, причем $0 1. Если интеграл \[ \int _a^{b}g(x)dx \] сходится, то сходится и интеграл \[ \int _a^{b}f(x)dx. \] 2. Если интеграл \[ \int _a^{b}f(x)dx \] расходится, то расходится и интеграл \[ \int _a^{b}g(x)dx. \]

Теорема (второй признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны и положительны при $x\in (a,\,b)$, причем существует конечный предел

\[ \theta = \lim_{x \rightarrow a+0} \frac{f(x)}{g(x)}, \quad \theta \neq 0, \, +\infty. \]

Тогда интегралы

\[ \int _a^{b}f(x)dx, \quad \int _a^{b}g(x)dx \]

сходятся или расходятся одновременно.

Рассмотрим интеграл

\[ I=\int _0^{1}\frac{1}{x+\sin x}\,dx. \]

Подинтегральное выражение - положительная функция на интервале интегрирования, подинтегральная функция стремится к $\infty$ при $x \rightarrow +0$, так что наш интеграл - несобственный второго рода. Далее, при $x \rightarrow +0$ имеем: если $g(x)=1/x$, то

\[ \lim _{x \rightarrow +0}\frac{f(x)}{g(x)}=\lim _{x \rightarrow +0}\frac{x}{x+\sin x}=\frac{1}{2} \neq 0,\, \infty \, . \]

Применяя второй признак сравнения, приходим к выводу, что наш интеграл сходится или расходится одновременно с интегралом

\[ \int _0^{+1}\frac{1}{x}\,dx . \]

Как было показано в предыдущем примере, этот интеграл расходится ($k=1$). Следовательно, исходный интеграл тоже расходится.

Вычислить несобственный интеграл или установить его сходимость (расходимость).

1. \[ \int _{0}^{1}\frac{dx}{x^3-5x^2}\,. \] 2. \[ \int _{3}^{7}\frac{x\,dx}{(x-5)^2}\,. \] 3. \[ \int _{0}^{1}\frac{x\,dx}{\sqrt{1-x^2}}\,. \] 4. \[ \int _{0}^{1}\frac{x^3\,dx}{1-x^5}\,. \] 5. \[ \int _{-3}^{2}\frac{dx}{(x+3)^2}\,. \] 6. \[ \int _{1}^{2}\frac{x^2\,dx}{(x-1)\sqrt{x-1}}\,. \] 7. \[ \int _{0}^{1}\frac{dx}{\sqrt{x+x^2}}\,. \] 8. \[ \int _{0}^{1/4}\frac{dx}{\sqrt{x-x^2}}\,. \] 9. \[ \int _{1}^{2}\frac{dx}{xlnx}\,. \] 10. \[ \int _{1}^{2}\frac{x^3\,dx}{\sqrt{4-x^2}}\,. \] 11. \[ \int _{0}^{\pi /4}\frac{dx}{\sin ^4x}\,. \]

1.Определение несобственного интеграла второго рода

Пусть f (x ) задана на [a ;b ], но неограниченна на нём. Пусть для определённости f (x ) неограниченна в левой окрестности точки b : , но в любом промежутке функция интегрируема. В этом случае точку b называют особой точкой.

Определение. Несобственным интегралом второго рода функции f (x ) на [a ;b ] называется конечный или бесконечный предел интеграла при

Если предел (1) существует и конечен, то говорят, что интеграл сходится, и значение предела считают значением интеграла. Если предел (1) не существует или равен бесконечности, то говорят, что интеграл расходится.

Аналогично определяется интеграл функции f (x ), неограниченной в правой окрестности точки а :

Пример 1. Исследовать на сходимость .

D 1) : интеграл расходится.

Итак, интеграл сходится при , расходится при . D

2. Формула Ньютона-Лейбница для несобственного интеграла второго рода

Пусть функция f (x ) определена и непрерывна в интервале [a ;b ) и вблизи точки b функция неограниченна (b - особая точка функции f (x )). Тогда для f (x ) в этом промежутке существует первообразная F (x ) и "h >0 по формуле Ньютона-Лейбница имеем

Отсюда следует, что несобственный интеграл (1) существует тогда и только тогда, когда существует конечный предел . В этом случае функция F (x ) является непрерывной на отрезке [a ;b ]. Тогда, переходя в (2) к пределу при h ®0, получим формулу Ньютона-Лейбница для несобственного интеграла второго рода

Итак , для вычисления несобственных интегралов второго рода можно использовать формулу Ньютона-Лейбница, если функция F (x ) непрерывна на отрезке [a ;b ] и (x )=f (x ) во всех точках, где f (x ) конечна.

Пример 2. Вычислить .

D х =0 – особая точка. Первообразная непрерывна на [-1;27], в том числе, и в точке х =0, следовательно, можно применить формулу Ньютона-Лейбница:

Пример 3. Исследовать на сходимость .

D х =0 – особая точка. Первообразная имеет в точке х =0 бесконечный разрыв. Следовательно, данный интеграл расходится и равен ¥.

Заметим , что если не обратить на это внимание и формально применить формулу Ньютона-Лейбница, то получим неверный результат:

3. Несобственные интегралы второго рода от неотрицательных функций

Теорема 1. Пусть f (x )³0 на [a ;b ) и интегрируема на [a ;b-h ] "h >0. Для сходимости несобственного интеграла (1) необходимо и достаточно, чтобы множество интегралов (h >0) ограничено сверху. В противном случае интеграл (1) расходится и равен ¥.

Для несобственных интегралов второго рода, как и для несобственных интегралов первого рода, имеют место теоремы сравнения 2 и 3. Сформулируем их без доказательства.

Теорема 2. Пусть функции f и g неотрицательны на [a ;b ) и интегрируемы на [a ;b-h ] "h >0. Пусть на [a ;b ) выполнено

Тогда: 1) из сходимости интеграла следует сходимость интеграла ;

2) из расходимости интеграла следует расходимость интеграла .

Теорема 3. Пусть функции f и g неотрицательны на [a ;b ) и интегрируемы на [a ;b-h ] "h >0. Если существует (0£k £¥), то

1) из сходимости интеграла при k <¥ следует сходимость интеграла ,

2) из расходимости интеграла при k >0 следует расходимость интеграла .

Замечание. Если в условиях теоремы 3 0<k< ¥ (конечное число, не равное 0), то интегралы и сходятся или расходятся одновременно.

В качестве функций сравнения удобно брать степенные функции: для промежутка [a ;b ) , а для промежутка (a ;b ] . Соответствующие интегралы , сходятся при , расходится при (в этом легко убедиться, сведя указанные интегралы линейной заменой переменной к интегралу , рассмотренному в примере 1).

Пример 4. Исследовать на сходимость . .

Сходится . Значит, по теореме 3, сходится и . D

Пример 6. Исследовать на сходимость .

D х =0 – особая точка функции f (x )=lnx . Пусть .

Это имеет место , в том числе, и при a <1, когда сходится. Значит, по теореме 3 сходится и данный интеграл. D

error: