Загадки современной физики. Загадки квантовой механики. Почему подпрыгивает мяч

Раз уж мы замахнулись ни много ни мало на описание мироздания, значит, стоит попытаться объяснить некоторые феномены из квантовой механики. Например, свойства элементарных частиц. Известно, что им присущи как волновые, так и корпускулярные свойства. Однако, в зависимости от обстоятельств, они те или иные свойства либо выставляют напоказ, либо прячут. Рассмотрим эксперимент, показывающий наиболее загадочные свойства элементарных частиц – квантовую суперпозицию. Очень популярно квантовая суперпозиция, суть эксперимента с двумя щелями и некоторые аналогичные эксперименты с источником элементарных частиц описана в , .

Приведу краткое описание эксперимента и постараюсь сделать это максимально понятно.

Экспериментальная установка состоит из источника электронов, двух щелей, и экрана, на котором наблюдается интерференционная картина. Источник электронов осуществляет эмиссию одиночных электронов (крайне низкая интенсивность). Так как электроны вылетают «штучно», необходимо время, чтобы набрать статистическую картинку распределения попадания электронов на экран. При открытой одной щели мы имеем на экране вполне ожидаемое распределение интенсивности ударов электронов об экран. Оно соответствует кривой Гаусса. Но ситуация кардинально меняется как только мы открываем вторую щель. Мы вдруг начинаем отчетливо видеть, что образуются области, запретные для попадания электронов. Т.е. наличие второй щели запрещает попадание электронов в те части экрана, в которые они попадали при наличии одной щели! Мы наблюдаем интерференционную картинку. Эта картинка сродни той, что мы бы видели при прохождении монохроматического света через те же две щели. Однако, в случае света (электромагнитных волн) интерференция легко объяснима. В этом случае, по принципу Гюйгенса, ситуация моделируется двумя идентичными источниками (в нашем случае щелями), испускающими синфазно монохроматический свет (электромагнитные волны). При этом чередование светлых и темных полос (интерференционная картинка) совершенно очевидна как результат сложения векторов амплитуд электромагнитной волны.



Электрон – частица, имеющая массу, конечный неразрывный объем. Объяснить в этом случае явление интерференции одиночных электронов обычным образом невозможно. Ничего не остается предположить, кроме того, что электрон начинает интерферировать «сам с собой», будто бы он идет по двум путям, через обе щели одновременно. При этом на экране появляются зоны, запретные для попадания электронов. Современная квантовая физика дает математический аппарат для объяснения и расчета этого феномена. Основой для этого явилась интерпретация Ричарда Фейнмана. Она заключается в том, что «…на отрезке от источника до некоторой [конечной] точки… каждый отдельно взятый электрон на самом деле перемещается по всем возможным траекториям одновременно …» . То есть, летящий электрон проходит одновременно два пути – через обе щели. Для обычного, «бытового» представления это нонсенс. Кстати, основной постулат квантовой суперпозиции примитивно можно выразить так: «…если точечная частица может находиться в одной из двух точек, то она может находиться и «одновременно в обеих точках».

Возникает вполне логичное желание – проследить траекторию полета электрона, чтобы убедиться, через какую щель пролетает электрон (а может быть через обе сразу, но тогда это бы противоречило нашим знаниям о нем). Но как только хотя бы в одну из щелей мы ставим пролетный детектор для электрона, картинка на экране кардинально меняется. Мы видим две полосы с размытыми краями и полное отсутствие интерференции. Зато мы начинаем точно знать, через какую щель пролетел электрон. И он действительно, как показывает детектор, пролетает только через одну из щелей. Т.е. если мы имеем возможность знать траекторию электрона – электрон ведет себя как частица. Если нет возможности узнать траекторию электрона – как волна. Но замечено, что так ведут себя не только электроны, но также атомы и, даже группы атомов. Однако, чем сложнее испускаемые частицы, тем хуже заметна интерференция. С телами видимых и, даже микроскопических размеров, интерференция не проявляется.

Факт регистрации электрона, пролетевшего через одну из щелей и исчезновение интерференционной картинки можно интерпретировать по-разному. Можно предположить, например, что это означает «предчувствие электроном» включенного детектора. Поэтому электрон и пролетает лишь через одну из щелей. Однако, если гипотетически изменить расстояния в этом эксперименте до космических, то такая интерпретация приводит к парадоксу: электрон будет знать заранее, включим ли мы детектор к моменту подлета к нему электрона. Он будет обязан соответственно этому вести себя: как волна, если мы не намерены включать детектор, или стать частицей еще до пролета через щель, даже если детектор включился уже после его пролета. Это странное проведение электрона объясняется отнюдь не его прозорливостью, а тем, что пока мы его не попытались измерить, его истории не существует, она не определена. История электрона формируется благодаря нашим наблюдениям. Подробно и очень популярно об этом можно прочитать у Брайана Грина . Я коснусь этого лишь вкратце. Электрон летит сразу всеми возможными путями. Т.е. как бы существует много вариантов истории. До той поры, пока мы не включили детектор. После этого выбирается лишь один вариант. Т.е. история определилась! Таково предположение о том, что квантовую историю мы творим сами в буквальном смысле. Заметьте, мы не меняем истории. Т.к. никто ее не наблюдал, она была не определена.

Однако мне по душе иное толкование. Оно в чем-то сходно с тем, которое дает П.В. Путенихин . Вот этот вариант. Электрон движется сразу всеми возможными путями вплоть до детектора или иного препятствия. Но движется он в ином пространстве, или пространстве иного измерения. В нашем пространстве есть лишь его след. Этим и объясняется, что след его весьма странен: для одного электрона и двух щелей - два маршрута. При достижении любого из этих следов детектора или иного препятствия происходит «конденсация» электрона или, другими словами, его «реализация» в наше пространство. Причем эта реализация происходит либо на препятствии, либо, в этот же момент на втором маршруте. При этом второй маршрут может быть удален от первого на очень значительное расстояние. Например, используя интерферометр Маха-Цандера (описано ниже) теоретически легко осуществить расстояние между маршрутами, например, в световой год. В этом случае информация о «необходимости реализовать электрон» с одного маршрута на другой передается практически мгновенно 9 , а значит, со скоростью, превышающую скорость света. Но это не противоречит законам Нашего Мира, поскольку электрон находится «вне его».

Еще более интересен эксперимент с отложенным выбором, эксперимент с «холостыми фотонами». Но о нем Вы можете прочитать самостоятельно, в одном из источников, например, .

Можно рассмотреть иной эксперимент, аналогичный двухщелевому. Это эксперимент на интерферометре Маха-Цандера, описанный Пенроузом. Привожу его, опираясь на и подменяя некоторые понятия, незнакомые неискушенному в физике читателю.

Чтобы понять, каким образом квантовая частица может находиться «в двух местах сразу» независимо от того, как далеко друг от друга расположены эти места, рассмотрим экспериментальную установку (Рис. 1), немного отличающуюся от эксперимента с двумя щелями. Как и прежде, у нас имеется лампа, испускающая монохроматический свет, по одному фотону за раз; но вместо того, чтобы пропускать свет

Схема эксперимента на интерферометре Маха-Цандера

через две щели, отразим его от полупосеребренного зеркала, наклоненного к пучку под углом 45 градусов.

После встречи с полупрозрачным зеркалом фотон может отразиться от него в сторону, а может пройти сквозь него и продолжать распространяться в том же направлении, в котором первоначально двигался. Но, как и в двухщелевом эксперименте, фотон «делится» и идет одновременно двумя путями. Причем эти два пути могут быть разнесены на очень большое расстояние. «Представьте себе, … что мы ждём целый год… Каким-то образом фотон оказывается сразу в двух местах, разделённым расстоянием в один световой год!

Есть ли какое-нибудь основание принимать такую картину всерьёз? Разве мы не можем рассматривать фотон просто как некий объект, находящийся с вероятностью 50% в одном месте, и с вероятностью 50% - в другом! Нет, это невозможно! Независимо от того, как долго фотон находился в движении, всегда существует возможность того, что две части фотонного пучка могут быть отражены в обратном направлении и встретиться, в результате чего могут возникнуть интерференционные эффекты, которые не могли бы возникнуть из вероятностных весов двух альтернатив. Предположим, что каждая часть фотонного пучка встречает на своём пути полностью посеребренное зеркало, наклоненное под таким углом, чтобы свести обе части вместе, и что в точке встречи двух частей помещено еще одно полупосеребренное зеркало, наклоненное под таким же углом, как и первое зеркало. Пусть на прямых, вдоль которых распространяются части фотонного пучка, расположены два фотоэлемента (рис.4). Что мы обнаружим? Если бы было справедливо, что фотон следует с вероятностью 50% по одному маршруту и с вероятностью 50% - по другому, то мы обнаружили бы, что оба детектора зафиксировали бы фотон каждый с вероятностью 50%. Однако в действительности происходит нечто иное. Если два альтернативных маршрута в точности равны по длине, то с вероятностью 100% фотон попадет в детектор А, расположенный на прямой, вдоль которой первоначально двигался фотон, и с вероятностью 0 – в любой другой детектор В. Иными словами фотон с достоверностью попадёт в детектор А!

Разумеется, такой эксперимент никогда не был поставлен для расстояний порядка светового года, но сформулированный выше результат не вызывает серьёзных сомнений (у физиков, придерживающихся традиционной квантовой механики!) Эксперименты такого типа в действительности выполнялись для расстояний порядка многих метров или около того, и результаты оказывались в полном согласии с квантово-механическими предсказаниями. Что же теперь можно сказать о реальности существовании фотона между первой и последней встречей с полуотражающим зеркалом? Напрашивается неизбежный вывод, согласно которому фотон должен в некотором смысле действительно пройти оба маршрута сразу! Ибо если бы на пути любого из двух маршрутов был помещён поглощающий экран, то вероятности попадания фотона в детектор А или В оказались бы одинаковыми! Но если открыты оба маршрута (оба одинаковой длины), то фотон может достичь только А. Блокировка одного из маршрутов позволяет фотону достичь детектора В! Если оба маршрута открыты, то фотон каким-то образом «знает», что попадание в детектор В не разрешается, и поэтому он вынужден следовать сразу по двум маршрутам».

Говоря о том, что «фотон каким-то образом знает», П.В. Путенихин не акцентирует внимания на источник таких знаний, это не его задача. Эту тему развивает М. Заречный , путем описания многоуровневого сознания. На уровнях (планах) которого существуют различные структуры. Причем высшие планы существуют вне времени. Т.е. причинно-следственные связи там отсутствуют. Это уровни абсолютного знания. Элементарные частицы (в нашем последнем случае это фотоны) связаны с этими уровнями.

Однако, по моему мнению, отсутствие временнОго измерения в пространствах не означает тождественность этих пространств. Я бы мог предложить смоделировать ситуацию, описанную выше, несколько иным образом. Но об этом чуть позже. А сначала сделаем удивительные выводы из описанных нами опытов:

1. Частица (фотон, электрон) может вести себя по-разному: как единая частица (корпускула), проявляя при этом все ее свойства и как волна, при этом одновременно распространяясь по всем возможным траекториям и проявляя волновые свойства, в частности, интерферируя.

2. В качестве «волны» частица может находиться одновременно в нескольких местах, которые могут быть разнесены на сколь угодно большое расстояние.

3. Если существует неопределенность положения частицы, то при попытке определить его (измерить положение частицы), частица моментально меняет свои волновые свойства на корпускулярные. Т.е. «реализуется» в одном из вероятных положений.

4. Процесс «реализации» волны в частицу осуществляется мгновенно, даже когда частица находится одновременно в местах, удаленных одно от другого, например, на расстояние светового года. Т.е. каким-то образом информация о факте измерения положения, проведенное на одном из маршрутов частицы, передается со скоростью, превышающей скорость света (практически мгновенно) на эту же частицу, находящуюся на другом маршруте.

Все изложенное выше не может не натолкнуть на мысль, что здесь не обходится без существования других измерений. Но и в этом случае мы не открыли ничего нового. Достаточно давно уже физики через квантовую механику ищут пути объединения описания всех физических взаимодействий (Гравитационного, Электромагнитного, Сильного и Слабого), известных в природе. Большие надежды возлагаются на Теорию Струн . Эта теория подразумевает наличие десятимерного (девять пространственных и одно временное измерение) пространства. Причем переход в другие измерения свернут на столь микроскопическом уровне, что он недоступен современной технике и вряд ли когда-либо будет доступен. Однако, по моему мнению, количество измерений, используемое в Теории Струн (как, впрочем, и любой другой Теории), не может отражать реальной картины Мироздания. Это лишь издержки существующего понятийного и математического аппарата, загнанного в рамки конкретной теории, а, значит и человеческого мышления. Природа же не знает уравнений и теорий, человек их сам создает, чтобы на основе накопленного опыта и знаний как можно точнее описать Сущий Мир вообще и Физический мир в частности.

Пространство Событий.

А теперь попытаемся предложить такую модель, которая не противоречила бы описанным опытам.

Снова вернемся к двухмерному миру, описанному нами в п.п.2.4. Под рассматриваемой плоскостью мы будем по-прежнему подразумевать наш четырехмерный пространственно-временной мир (Вселеную, Пространство). Мир, в котором максимальная скорость передачи любой информации не может превышать скорость света в вакууме. Наша плоскость состоит из одного временнОго измерения и одного пространственного, т.к. большее количество пространственных измерений приведет к потере наглядности. Допустим, что плоскость движется в перпендикулярном ей направлении, т.е. в измерении, имеющем на одну координату больше. Назовем его Пространством Событий (ПС) 10 .

Рассмотрим очень упрощенную схему распространения в нашем пространстве фотонов, не отвлекаясь на различные тонкие (и не очень) эффекты, как то отражения, поглощения и пр. Мы выбираем именно фотоны, т.к. их движение более детерминировано относительно координат Пространства, чем движение других частиц, например, электронов. Так, согласно п.2.4, фотоны движутся лишь вдоль пространственных координат.

Каждый излученный фотон мгновенно рождает в пространстве два симметрично (относительно вектора скорости плоскости) расходящихся луча с началом в месте излучения. Проекция лучей на плоскость лежит вдоль оси пространственной координаты, как и положено для фотона. Эти лучи не движутся, в отличие от плоскости. Наблюдатель, находящийся в плоскости, будет думать, что в его мире фотоны распространяются одновременно, всеми возможными путями (коих у него в одномерном мире всего два). На самом деле он видит лишь проекции лучей на свой мир, которые (проекции) он называет фотонами.

Два луча, исходящих из одной точки, есть ничто иное, как конус в двухмерном мире. Если бы мы рассматривали трехмерный пространственно-временной мир, то вместо двух лучей мы имели бы знакомый нам из геометрии конус, а для нашего четырехмерного пространственно-временного - четырехмерный конус, который достаточно сложно представить. Опять же, благодаря рассмотрению нами именно фотонов, мы, без ущерба для теории, но с явным выигрышем в наглядности, можем рассматривать двухмерный пространственный мир (плоскость) и вовсе не рассматривать временнОй координаты Пространства. В Этом случае КС будет выглядеть как обычный трехмерный конус. (Рис.2)

В наиболее общем виде модель выглядит следующим образом. N-мерное Пространство-Время (Пространство) перемещается в N+1 мерном Пространстве Событий, содержащим вышеуказанное Пространство. Рождение каждой элементарной частицы в Пространстве вызывает мгновенное создание в Пространстве Событий N+1 мерного конуса (Конуса Событий или КС), который в момент его создания имеет с Пространством лишь одну общую точку. Сам конус неподвижен в системе координат ПС и состоит из бесконечного количества образующих.



Рождение фотона в двухмерном пространственном мире и распространение его в нем посредством изменения сечения Конуса Событий Пространством.

«Двигаясь», Пространство проходит сквозь рожденный частицей конус. При этом, для наблюдателя, находящегося в Пространстве, создается иллюзия распространения этой частицы всеми возможными путями одновременно. Запрещенными считаются те маршруты, на которых образующие КС встречают препятствие в виде материи Пространства. На этих маршрутах соответствующие им образующие Конуса «лопаются». После того, как лопнула предпоследняя образующая конуса, считается, что частица определилась со своим маршрутом и ее положение мы можем знать достоверно. Она может оказаться либо на предпоследнем лопнувшем маршруте, либо на последнем уцелевшем. В Пространстве будет считаться, что точное местоположение этой частицы измерено.

Естественно, что угол раскрытия КС и скорость движения Пространства определяют постоянную скорости света в этом Пространстве. При этом стрела времени определяется вектором скорости движения Пространства в ПС.

Эта модель объясняет многие эффекты. Укажу лишь на некоторые из них.

1. Очевидность распространения частиц одновременно несколькими путями вытекает автоматически из самого описания модели.

2. Проблема источника "быстрых знаний" (например, о блокировании одного из маршрутов в квантово-механических экспериментах на интерферометрах) как описанных в этой брошюре, так и в рекомендованной к прочтению литературе, решается существованием надвременнОго пространства, содержащего Конуса Событий. Каждый из этих КС является единым объектом и его состояние мгновенно (т.к. это надвременнОй объект) отражается в Пространстве на любых расстояниях. Таким образом устраняется парадокс передачи информации в Пространстве со скоростью, превышающей скорость света.

3. Т.к. каждая частица Пространства может двигаться в этом Пространстве только по поверхности КС, то группа связанных между собой частиц (например, нуклоны в ядре атома) могут двигаться только по тем маршрутам, которые определяются пересечением Конусов Событий составляющих эту группу частиц. С этим, в частности, связано ослабленное, но все же проявление волновых свойств более тяжелых частиц (групп частиц) и полнейший детерминизм макроскопических объектов Пространства.

4. Из предыдущего объяснения следует, что направляющей силой эволюции объектов Пространства вполне могли бы стать объекты (либо среда) Пространства Событий (если эти объекты или среда существуют), взаимодействие которых с Конусами Событий вызывает деформацию последних. Например, так, как влияют в нашей Вселенной различные среды на преломление света или поля, воздействующие на материю. Кстати, в и показано, что в процессе эволюции нашей Вселенной гравитационное поле, предположительно, «вываливается» из нашего 3-х мерного пространства. Все остальные поля полностью принадлежат нашему пространству. И именно последнему факту мы обязаны тем, что мы не видим (в буквальном смысле) остальные измерения. Электромагнитные поля, часть которых мы воспринимаем зрением, просто не в состоянии покинуть наш четырехмерный пространственно-временной мир.

Четвертое положение также наводит на размышления о возможности некоторых локальных понижений энтропии посредством воздействия ПС. Но физика утверждает, что локальные понижения энтропии свойственны нашему миру только в виде статистической вероятности. Энтропия же в целом постоянно и неуклонно увеличивается. Возникновение живых организмов, и человека в особенности, является фактом беспрецедентно высокого локального понижения энтропии. Флуктуацией это объяснить сложно (а, скорее, не возможно), поэтому все объясняется тем, что живые организмы, однажды возникнув, создают условия для более бурного роста энтропии, компенсирующего с переизбытком свою собственную низкую энтропию. Такое, несколько, на мой взгляд, натянутое объяснение, может быть скорректировано четвертым положением и, в его свете, выглядеть не столь уж невероятным. Тем самым оно напоминает о наших размышлениях в п.3.1 о развитии дефектов и направленной селекции.

Для того, чтобы создать описанную в начале этого пункта модель, нам пришлось ввести одно дополнительное пространственное измерение (или, точнее, измерение, идентичное пространственному) и одно измерение, идентичное временнОму. Как введено последнее описано в примечании. Но можно было бы и не вводить дополнительную временную координату. Очень наглядно это можно пояснить на примере расширяющейся вселенной с положительной кривизной. В п.2.1 я упомянул двумерную модель такой вселенной - раздувающийся резиновый шарик. Кроме того, что поверхность шарика растягивается в направлениях, принадлежащих "вселенной шарика", она еще и движется в направлении измерения, не принадлежащего "вселенной шарика", а именно в радиальном направлении. Вот эта составляющая движения и может считаться вектором скорости нашего Пространства в ПС. А так как расширение Пространства происходит с привязкой к текущему в Пространстве времени, у нас исчезла необходимость в дополнительной временной координате.

На минутку отвлечемся, и на этом этапе повествования, сделаем небольшой экскурс в уже ранее сказанное. Если представить, что расширяющийся шарик у нас не из резины, а соткан из тончайшего полотна, которое может тянуться словно резина, но имеет сетчатую структуру с размером ячейки порядка планковской (или немного большей) длины (10 -33 см), мы можем проиллюстрировать эффект флуктуации материи (энергии), описанных нами в п.2.2 и в конце п.2.4. Грубо говоря, мы наблюдаем не рождение из ниоткуда частиц и не пропадание их в никуда. Мы наблюдаем "просеивание" частиц (энергии) из "внешнего" пространства сквозь сито нашего пространства. И даже можно допустить вероятность подмены частиц нашего мира частицами «извне». Скорость этого просеивания соответствует скорости движения границы нашего пространства в Пространстве Событий. Граница же нашего пространства находится повсюду: внутри горы, книжного шкафа, в двух сантиметрах от Вашего носа, внутри меня и Вас. Т.е. абсолютно в каждой точке нашей Вселенной. Откуда берутся просеиваемые частицы, можно только гадать. Возможно, это части КС нашего мира, а возможно, что это часть материи ПС, которая проявляется у нас в виде элементарных частиц.

Введенный здесь термин Пространства Событий в наиболее общем случае означает составляющую часть Мнимого Пространства. Остается открытым вопрос. Сможем ли мы как-либо обнаружить, существуют ли эти измерения реально или это плод "больного воображения", пытающегося нагромоздить невероятное, чтобы объяснить факты, порой сомнительные?

Медитация. Нирвана.

Очень сложно рассуждать о буддизме, т.к. это величайшая философия, в которой содержится множество направлений. Эти направления довольно сильно различаются, причем по достаточно принципиальным деталям. Одинаковые термины могут означать разные понятия. Понятия, в свою очередь, могут также истолковываться по-разному. Чтобы уверенно рассуждать об особенностях этой философии нужно быть специалистом в этой области, коим я, откровенно говоря, себя не считаю. Поэтому мы коснемся лишь очень немногого. Только того, что лежит на самой поверхности.

Из всех будд (в буквальном переводе на русский язык: пробужденных или просветленных), по моему мнению, наиболее заметный след оставил Будда Шакьямуни. В дальнейшем мы будем его называть Буддой. Он был величайшим Учителем, изучавшим через себя весь мир и познавший Мудрость. Сейчас, спустя несколько десятков веков, очень сложно (а иногда и невозможно) выделить мысли собственно Будды от интерпретаций его учеников и последователей. Основной его идеей стало то, что страдания людей связаны с их собственными поступками. Избежать страданий можно идя по восьмеричному пути. Это путь, который прошел сам Будда, состоит из восьми правил, постоянно соблюдая которые, человек последовательно освобождается от своих страданий. Пройдя этот путь, человек способен достичь нирваны.

Состояние нирваны есть некая форма существования вне личности. Эта форма не эмпирическая. Поэтому буддийские тексты порой не содержат описание ее природы и характеристик в утвердительном выражении. Описания состояния нирваны либо замалчиваются (так поступал Будда) либо часто отрицательные, типа «Это не…». И это можно понять, если попытаться, например, описать состояние вне привычного нам пространства и вне течения привычного нам времени. Иными словами, как бы Вы смогли описать, допустим, наблюдая себя в Пространстве Событий, с другим количеством пространственных измерений и, как минимум, с двумя временнЫми? А ведь в рассуждениях о нирване постоянно упоминается существование вне нашего пространства и вне нашего времени. Не правда ли, немного странные параллели?

В то время, как индуизм предполагает реинкарнацию, буддизм отрицает ее. Реинкарнация подразумевает наличие души. Будда же утверждал, что души не существует, а жизнь - это непрерывный поток состояний, подобный пламени в светильнике. В этом случае пламя в каждый момент времени поддерживается существованием пламени в предыдущий момент. Т.е каждое последующее состояние зависит и возникает от предыдущего. Как один факел может зажечь другой, так и окончание одного жизненного цикла (от рождения до смерти) дает начало следующему.

Старейшая школа буддизма Тхеравада описывает Эго, как состоящий из совокупности пяти групп разных элементов. После смерти индивида эта совокупность распадается. Следующее воплощение уже обусловлено иной комбинацией этих же элементов и означает появление новой индивидуальности. Если оглянуться назад, то в п.4.1 приблизительно об этом и шла речь, когда мы рассматривали с Вами третий вариант забывания.

Я весьма поверхностно попытался описать философию буддизма. Можно было бы немного сказать и об индуизме, но это две достаточно близких философии и поэтому необходимости в этом я не вижу. Обе философии подразумевают нирвану как высшую цель всех живых существ. Обе философии сходятся на том, что достичь нирваны в течение одного воплощения не получается. Именно человеческое тело считается наиболее благоприятным для перехода в состояние просветления (нирвану). А чтобы перейти в состояние нирваны, известны описания ступеней для восхождения. М. Заречный подводит под это основу. Но здесь надо учитывать следующее:

1. Делать скидку на субъективность восприятия. Т.е. если предположить, что любой из "просветленных" был точно таким же человеком, как и все остальные, то все психо-физиологические свойства живого организма были присущи и ему. Пока "восхождение" идет внутри социума и обращено на социум, оно определяется законами этого социума и законами психологии, действующими в нем. Когда же речь идет об упражнении с собственным мозгом (медитация) - задействованы иные законы, еще мало изученные. Вполне возможно, что практикующий только думает, что выходит на требуемый уровень сознания. На самом деле его упражнения с собственным мозгом приводят лишь к иллюзии этого (см. последний абзац п.4.1). Как другой аргумент можно привести то, что можно себя представить в режиме «затуманенного сознания». Например, приблизительно такого, что происходит с нами во сне. Мы можем вообразить себя кем угодно. Например, птицей. Находясь на такой круче, что захватывает дух, можно отчаянно замахать руками (крыльями?) чтобы если не взлететь, то плавно спланировать и приземлиться. А это пьянящее чувство полета и ощущение бескрайнего неба! Я бы мог представить также ощущения рыбы, собаки, сидящей на цепи и т.д. Этим можно объяснить и миф о переселении душ (известный в индуизме), и то, что мы содержим внутри себя всю Вселенную, а Вселенная, конечно же, содержит нас. Т.е. «все во всем». Вселенная содержит в себе песчинку, но и песчинка содержит в себе целую Вселенную. С другой стороны, это может являться и аргументом «За», а не «Против» этой теории.

2. Количество и само наличие ступеней восхождения медитирующего (о них Вы можете почитать в ), определялось чисто методическим удобством для человека и основывалось на житейском опыте, психологии и, возможно, культурных традициях. По моему мнению, не нужно искать большой смысл в этих ступенях. Это лишь методика того, как наиболее просто из отправной точки достичь конечной. Следуя ей, мы последовательно отключаем все каналы, связывающие наш мозг с внешним миром.

Личное дело каждого, следовать ли дорогой Будды или нет. Я думаю, что никто возражать не будет, что первые семь ступеней восьмеричного пути, полностью соответствуют общечеловеческим ценностям. Материалисты могут считать восьмую ступень чем-то вроде психологического само-тренинга. Мне же думается, что находящиеся на этой ступени могут решить судьбу излагаемой здесь теории, стоит ли она хоть чего-либо. А в случае положительного ответа, мы будем иметь инструмент для изучения, как нашего мира, так и МП. И этим инструментом являемся мы сами.

Глава 5

ОСНОВНЫЕ ИТОГИ И ВЫВОДЫ

Что может знать песчинка, прилипшая к зеленому листу, о жизни живой клетки этого листа?..
Что может знать живая клетка этого листа о жизни гусеницы, по нему проползшей?..
Что может знать гусеница о жизни воробья, ее склевавшего?..
Что может знать воробей, сидящий на ветке, о жизни человека, прошедшего под деревом?..
Так почему же человек решил, что на нем эта цепочка заканчивается?..

В этой книге я попытался показать, что с помощью многомерности нашего мира можно объяснить очень многие странные явления, известные в нашем мире и, вероятно, все же происходящие. Здесь намеренно приводились самые неожиданные примеры, даже спорные и неподтвержденные. И, если ни один из вышеописанных фактов так и не будет никогда подтвержден, можно считать описанное мной полным бредом, а наш мир чисто материальным. Однако сложно отмахнуться от того, что является длительное время (а порой даже и многие века) предметом споров и дискуссий. При строгом подходе, по большому счету, я не нашел ничего нового, как предположить существование Духа, другими словами Бога. Это то, что делали люди тысячи лет, не зная, как можно объяснить различные природные явления. Однако Дух в моем понимании есть несколько иное. Это не тот, кто заботится о своих чадах, учит и предостерегает их, ведет счет грехам и учитывает раскаяние. Это лишь отец (или мать) как минимум всего живого. Он создал наш мир (и, возможно, другие миры, пока неизвестные нам) возможно случайно, а, возможно из-за какой-либо необходимости, неизбежности, побочного эффекта. Те Заповеди, которые нам даны, являются общемировыми ценностями. По-видимому они даны нам все же человеком или группой людей, подключенных к общемировому Разуму, Духу, попросту говоря продуктивно медитирующих или (и) осененных Знанием. Без соблюдения этих Заповедей человечество обречено на вымирание, превращение в животных ввиду того, что исчезнет возможность осознания Души. Наша Душа - проекция Духа на наш мир. И через нашу Душу у нас есть шанс если не понять смысл и цель нашего существования, то хотя бы изучить и, возможно, научиться управлять явлениями, пока необъяснимыми научно.

Но, все же, обратите внимание, провокация, с которой я начал эту главу, применима ко всем силам, известным в природе. Только о них говорят не как о "божественных силах", а как о законах природы. Может быть, все дело в том, что они, почти все (кроме гравитации), могут быть описаны в измерениях нашего четырехмерного пространственно-временного мира. Сила гравитации сильно "вываливается" из общего описания так же, как она, по-видимому "вываливается" и из нашего четырехмерного мира. И что же, после этого, нам мешает предположить, что существует еще одна сила, кроме гравитации, которая почти полностью вывалилась в иной мир? То, что эта сила не воздействует на искусственно созданные приборы? Или то, что она не проявляется повсеместно и ежечасно? По большому счету это не ответ. Но эта сила является последним островком, не принадлежащим официальной науке и который наука демонстративно и категорично игнорирует.

Предполагается, что Теория Струн может претендовать на роль Теории Всего Сущего (ТВС) . Время покажет, так ли это, если не существует ни Духа, ни Души. Но в этом случае, даже если хотя бы один из один описанных выше нематериальных феноменов останется необъясненным, эта ТВС таковой считаться не может. Но Теория Струн сможет приоткрыть дверь в иные измерения, а значит, объяснить природу некоторых физических связей и явлений. Это начало складывающейся мозаики всего Сущего мира. Возможно, объяснит, как работает «радиоприемник» (см. п.4.3.) Человека. Может быть даже, какие сигналы он принимает. Но никак не опишет «Передающую станцию». Я задумываюсь над тем, хотелось ли бы мне, чтобы Теория Струн оказалась бы ТВС. С одной стороны - да. Но, скорее всего, она лишь сведет воедино все известные виды физических сил и оставит в стороне духовность. Или сведет духовность к примитиву.

Все же хочется иметь такую ТВС, которая сведет воедино не только физические силы, но и другие, например, социальные, эволюционные и т.п.

Подводя итоги этого повествования, повторю основные тезисы, содержащиеся в этой статье.

1. Сущий мир многомерен, и измерений в нем больше чем три, или даже четыре.

2. Наш мир возник как результат развития цепочки дефектов различного уровня, начиная с первого (образование нашей Вселенной).

3. Человек способен изучать, как минимум, измерения ответственные за свою Душу, и их законы так же, как он изучает сейчас законы нашего трехмерного пространства и времени.

4. Человек имеет инструмент для изучения законов духовных измерений, и этот инструмент его Душа. Чтобы проверить вышесказанное, необходима работа психоаналитиков, а также изучение описаний состояний нирваны в древних буддийских и индуистских источниках. При этом нужно иметь ввиду, что Человек может оперировать лишь "проекцией" Духа на себя, свое тело. А проекция и оригинал могут иметь весьма мало общего. Это, как в известной притче о слепцах, описывающих слона, каждый из которых представлял его на свой лад.

5. Даже если тело человека не совершенно, совершенна его душа. В этих целях Человек обязан сохранять связь со своей Душой. Только в этом случае возможен прогресс во всех областях и только это может спасти человечество от роковых шагов. Последнее связано не только с этой теорией, но и с общечеловеческими ценностями.


Научная фантастика – яркое подтверждение тому, что физика может быть интересна не только учёным, но и людям далёким от исследовательских лабораторий. Конечно, в книгах и фильма не рассказывают о научных теориях, а точнее подают физические факты занимательно и интересно. В этом обзоре десятка загадок из области физики, которые учёным ещё предстоит объяснить.

1. Лучи сверхвысоких энергий


Атмосфера Земли постоянно бомбардируется высокоэнергетическими частицами из космоса, которые называются « космическими лучами». Хотя они не наносят большого вреда людям, физики просто очарованы ими. Наблюдение за космическими лучами многому научило ученых об астрофизике и физике частиц. Но есть лучи, которые остаются загадкой по сей день. В 1962 году, во время эксперимента Volcano Ranch, Джон Д. Линсли и Ливио Скарси увидели нечто невероятное: космический луч сверхвысокой энергии с энергией более 16 джоулей.

Чтобы наглядно объяснить сколько это, можно привести следующий пример: один джоуль - это количество энергии, необходимое для поднятия яблока с пола на стол. Вся эта энергия была сосредоточена, однако, в частице в сто миллионов миллиардов раз меньше, чем яблоко. Физики без малейшего понятия, как эти частицы получают подобное невероятное количество энергии.

2. Инфляционная модель Вселенной


Вселенная удивительно равномерная в больших масштабах. Так называемый «космологический принцип» гласит, что куда бы ни отправиться во Вселенной, в среднем везде будет примерно одинаковое количество материала. Но теория Большого Взрыва предполагает, что во время зарождения Вселенной должны были наблюдаться большие различия в плотности. Таким образом, она была намного менее однородная, чем Вселенная сегодня.

Инфляционная модель предполагает, что Вселенная, которую все видят сегодня, происходит из крошечного объема ранней Вселенной. Этот маленький объем внезапно и быстро расширился, намного быстрее, чем Вселенная расширяется сегодня. Грубо говоря, это выглядело так, будто воздушный шарик внезапно надули воздухом. Хотя это объясняет, почему сегодня Вселенная более однородная, физики все еще не знают, что вызвало это «надутие».

3. Темная энергия и темная материя


Это удивительный факт: только около 5 процентов Вселенной состоит из того, что люди могут видеть. Несколько десятилетий назад физики заметили, что звезды на внешних краях галактик вращаются вокруг центра этих галактик быстрее, чем прогнозировалось.Чтобы объяснить это, ученые предположили, что в этих галактиках может быть какая-то невидимая «темная» материя, которая заставила звезды вращаться быстрее.

После появления этой теории дальнейшие наблюдения расширяющейся Вселенной привели к тому, что физики пришли к выводу: темной материи должно быть в пять раз больше, чем все, что могут видеть люди (т. е. обычной материи). Наряду с этим, ученые знают, что расширение Вселенной действительно ускоряется. Это странно, потому что стоило бы ожидать, что гравитационное притяжение материи («обычной» и «темной») замедлит расширение Вселенной.

Чтобы объяснить, что же уравновешивает гравитационное притяжение материи, ученые предположили существование «темной энергии», которая способствует расширению Вселенной. Физики полагают, что по меньшей мере 70 процентов Вселенной находится в форме «темной энергии». Тем не менее по сей день частицы, составляющие темную материю, и поле, которое составляет темную энергию, никогда непосредственно не наблюдались в лаборатории. По сути, ученые ничего не знают о 95 процентах Вселенной.

4. Сердце черной дыры


Черные дыры - одни из самых знаменитых объектов в астрофизике. Их можно описать их как области пространства-времени с такими сильными гравитационными полями, что изнутри даже не может пробиться свет. С тех пор как Альберт Эйнштейн в своей общей теории относительности доказал, что гравитация «искривляет» пространство и время, ученые знают, что свет не защищен от гравитационных эффектов.

Фактически, теория Эйнштейна была доказана во время солнечного затмения, которое продемонстрировало, что гравитация Солнца отклоняет лучи света, идущие от далеких звезд. С тех пор наблюдалось много черных дыр, в том числе огромная, находящаяся в центре нашей галактики. Но тайна того, что происходит в сердце черной дыры, до сих пор не решена.

Некоторые физики считают, что может существовать «сингулярность» - точка бесконечной плотности с некоторой массой, сосредоточенной в бесконечно малом пространстве. Однако, по-прежнему идут дискуссии о том, теряется ли информация внутри черных дыр, которые поглощают все частицы и излучение. Хотя от черных дыр исходит излучение Хокинга, оно не содержит никакой дополнительной информации о том, что происходит внутри черной дыры.

5. Разумная жизнь вне Земли


Люди испокон веков мечтают о пришельцах, когда они смотрят на ночное небо и гадают, может ли там кто-то жить. Но в последние десятилетия было обнаружено множество доказательств того, что это не просто мечта. Для начала, экзопланеты оказались гораздо более распространены, чем предполагалось ранее, причем у большинства звезд имеются планетарные системы. Также известно, что временный разрыв между тем, когда на Земле появилась жизнь, и когда появилась разумная жизнь, очень мал. Означает ли это, что много где должна была сформироваться жизнь.

Если это так, то нужно ответить на знаменитый «парадокс Ферми»: почему люди до сих пор не вступили в контакт с инопланетянами. Возможно, жизнь - обычное явление, но разумная жизнь редка. Может быть, через какое-то время все цивилизации решают не общаться с другими жизненными формами. Может, с людьми просто не хотят разговаривать. Или, как ни странно, возможно, это показывает, что многие инопланетные цивилизации уничтожают себя вскоре после того, как становятся технологически достаточно продвинутыми, чтобы общаться.

6. Путешествие быстрее скорости света


С тех пор как Эйнштейн изменил всю физику своей специальной теорией относительности, физики были уверены, что ничто не может двигаться быстрее скорости света. Фактически, теория относительности говорит, что когда любая масса двигается со скоростью, близкой к скорости света, то для этого требуется огромная энергия. Это видно в космических лучах сверхвысоких энергий, упомянутых ранее. У них необычайная энергия относительно их размера, но и они не путешествуют быстрее скорости света.

Жесткое ограничение скорости света может также объяснить, почему сообщения от чуждых цивилизаций маловероятны. Если они также ограничены этим фактором, то сигналы могут идти тысячи лет. В 2011 году в ходе эксперимента OPERA были получены предварительные результаты, которые предполагали, что нейтрино движутся быстрее скорости света.

Позже исследователи заметили некоторые ошибки в их экспериментальной установке, которые подтвердили, что результаты были неверными. В любом случае, если существует какой-либо способ передачи материи или информации быстрее скорости света, он, несомненно, изменит мир.

7. Способ описать турбулентность


Если вернуться из космоса на Землю, окажется, что и в повседневной жизни есть много вещей, которые трудно понять. За простейшим примером не нужно далеко ходить - можно открыть дома кран. Если открыть его не полностью, то вода будет течь плавно (это называется «ламинарным потоком»). Но если открыть кран полностью, то вода начнет течь неравномерно и разбрызгиваться. Это простейший пример турбулентности. Во многих отношениях турбулентность по-прежнему остается нерешенной проблемой в физике.

8. Сверхпроводник с комнатной температурой


Сверхпроводники - одни из самых важных устройств и технологий, которые когда-либо открыли люди. Это особый тип материала. Когда температура падает достаточно низко, электрическое сопротивление материала падает до нуля. Это означает, что можно получать огромный ток после подачи маленького напряжения на сверхпроводник.

Теоретически электрический ток может течь в сверхпроводящем проводе в течение миллиардов лет без рассеивания, потому что нет сопротивления его току. В современных же обычных проводах и кабелях из-за сопротивления теряется значительная часть мощности. Сверхпроводники могли бы уменьшить эти потери до нуля.

Есть одна проблема - даже высокотемпературные сверхпроводники должны быть охлаждены до температуры в минус 140 градусов по Цельсию, прежде чем они начнут демонстрировать свои замечательные свойства. Охлаждение до столь низких температур обычно требует жидкого азота или чего-то подобного. Поэтому это очень дорого. Многие физики по всему миру пытаются создать сверхпроводник, которые может работать при комнатной температуре.

9. Материя и антиматерия


В некотором смысле, люди до сих пор не знают, почему что-то существует вообще. Для каждой частицы существует «противоположная» частица, называемая античастицей. Итак, для электронов есть позитроны, для протонов существуют антипротоны, и так далее. Если частица когда-либо касается своей античастицы, они аннигилируют и превращаются в излучение.

Неудивительно, что антиматерия невероятно редкая, поскольку все бы просто уничтожилось. Иногда она попадается в космических лучах. Также ученые могут сделать антивещество в ускорителях частиц, но стоить это будет триллионы долларов за грамм. Однако, в целом антиматерия (как считают ученые) невероятно редкая в нашей Вселенной. Почему это так - настоящая тайна.

Просто никто не знает, почему в нашей Вселенной доминирует материя, а не антиматерия, ведь каждый известный процесс, который изменяет энергию (излучение) на вещество, производит одинаковое количество материи и антиматерии. Теория Уайлдера предполагает, что могут существовать целые области Вселенной, в которых доминирует антиматерия.

10. Единая теория


В XX веке были разработаны две великие теории, которые много что объясняли в физике. Одной из них была квантовая механика, в которой подробно описывались, как ведут себя и взаимодействуют крошечные, субатомные частицы. Квантовая механика и стандартная модель физики частиц объяснили три из четырех физических сил в природе: электромагнетизм и сильные и слабые ядерные силы.

Другой большой теорией была общая теория относительности Эйнштейна, объясняющая гравитацию. В общей теории относительности гравитация возникает, когда наличие массы изгибает пространство и время, заставляя частицы следовать по определенным изогнутым траекториям. Это может объяснить вещи, которые происходят в самых грандиозных масштабах - образование галактик и звезд. Есть только одна проблема. Две теории несовместимы.

Ученые не могут объяснить гравитацию способами, которые имеют смысл в квантовой механике, а общая теория относительности не включает эффекты квантовой механики. Насколько можно судить, обе теории верны. Но они, похоже, не работают вместе. Физики уже давно работают над каким-то решением, которое может примирить две теории. Оно называется Великой единой теорией или просто Теорией всего. Поиски продолжаются.

И в продолжение темы мы собрали ещё .

Жизнь - самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира. В ней авторы рассматривают как новейшие экспериментальные данные, так и открытия с переднего края науки, и делают это в неповторимо доходчивом стиле. Джим Аль-Халили и Джонджо Макфадден рассказывают о недостающем компоненте квантовой механики; феномене, который лежит в основе этой самой таинственной из наук.

Книга:

<<< Назад
Вперед >>>

Мы вскоре вернемся к фотону и дереву и узнаем, как они связаны с квантовым миром, но сначала предлагаем вам рассмотреть удивительно простой эксперимент, который подчеркивает таинственность квантового мира. Пока мы прилагаем все усилия, чтобы как можно понятнее объяснить, что подразумевают такие выражения, как «квантовая суперпозиция», нет ничего нагляднее знаменитого опыта с двумя щелями, описанного ниже.

Опыт с двумя щелями наиболее просто и в полной мере показывает, что в квантовом мире все устроено по-другому. Частицы могут вести себя как волны, распространяясь в пространстве, а волны могут иногда приобретать свойства частиц. Мы уже говорили о корпускулярно-волновом дуализме: во введении он описан как особенность, благодаря которой становится понятно, как Солнце генерирует энергию; в главе 3 мы с вами разобрались в том, как волновые характеристики электронов и протонов позволяют им преодолевать энергетические барьеры в структуре ферментов. В этой главе вы узнаете, что корпускулярно-волновой дуализм также влияет на наиболее важные биохимические реакции в биосфере : превращение воздуха, воды и света в растения, микроорганизмы и - косвенно - во всех нас. Но сначала мы должны понять, как смелая идея о том, что частицы могут находиться в нескольких местах одновременно, подтверждается простейшими, изящными и в то же время наиболее масштабными экспериментами в истории: один из этих экспериментов, согласно Ричарду Фейнману, «лежит в сердце квантовой механики».

Однако должен предупредить, что описанное тут покажется вам невозможным и вы можете подумать, что должен быть более рациональный способ объяснить происходящее. Вы можете размышлять, в чем же секрет этого магического фокуса. Или вы можете прийти к выводу, что опыт представляет собой чистой воды теоретическую спекуляцию, выдуманную учеными, которым не хватило воображения, чтобы понять механизмы природы. Но ни одно из этих объяснений не является верным. Опыт с двумя щелями не имеет (здравого) объяснения, но является реальным и воспроизводился тысячи раз.

Мы опишем эксперимент в три этапа; первые два будут касаться описания условий, чтобы вы могли оценить непостижимые результаты третьей, основной, стадии.

Сначала пучок монохромного света (состоящий из волн одного цвета, то есть волн одинаковой длины) направляется на экран с двумя узкими щелями, которые позволяют некоторому количеству света пройти через обе щели на второй экран (рис. 4.1).


Рис. 4.1. Опыт с двумя щелями, стадия 1. Когда монохромный свет (имеющий определенную длину волны) направляется на две щели, каждая щель выступает в качестве нового источника света с другой стороны. Благодаря волновой природе свет распространяется (рассеивается) после прохождения через каждую щель, так что круговые волны перекрываются и взаимодействуют друг с другом, образуя темные и светлые полосы на заднем экране

Точно контролируя ширину щелей, расстояние между ними и расстояние между двумя экранами, мы можем создать последовательность светлых и темных полос на втором экране, известную как интерференционная картина.

Интерференционные картины представляют собой графики волн, их легко увидеть в любой волновой среде. Бросьте камень на гладь пруда, и вы увидите, как ряд концентрических циркулярных волн расходится от места всплеска. Бросьте два камня в один пруд, и каждый из них будет образовывать свои собственные концентрические волны. В том месте, где волны от двух камней перекрываются, вы увидите интерференционную картину (рис. 4.2).


Рис. 4.2. Конструктивная и деструктивная интерференция волн

Там, где пик одной волны встречается с минимальной точкой другой, они нейтрализуют друг друга, что приводит к отсутствию волны в этой точке. Это явление называют деструктивной интерференцией. И наоборот, там, где встречаются два пика или две минимальные точки, они усиливают друг друга, создавая двойную волну: это явление называют конструктивной интерференцией. Подобная картина угасания и усиления волн может наблюдаться в любой волновой среде. Английский физик Томас Янг продемонстрировал интерференцию пучков света в ранней версии опыта с двумя щелями, проведенного более 200 лет назад. Результат убедил его и многих других ученых в том, что свет на самом деле представляет собой волну.

Интерференция, которую мы наблюдаем в опыте с двумя щелями, в первую очередь зависит от пути, по которому волны света проходят через щель и затем распространяются - свойство волн, известное как дифракция. Таким образом, пучки, исходящие из щелей, до попадания на задний экран перекрывают и поглощают друг друга точно так же, как волны на воде. В определенных точках экрана волны света, исходящие из двух щелей, попадают в фазу, когда пики и низшие точки чередуются - либо потому, что они прошли одинаковое расстояние до экрана, либо потому, что разница в пройденном ими расстоянии кратна расстоянию между их пиками. В этом случае высшие и низшие точки волн сочетаются и образуют еще более высокие и низкие точки. Это явление называют конструктивной интерференцией. При наслаивании волн образуется свет высокой интенсивности и, следовательно, яркая полоса на экране. Но в других точках свет из двух щелей падает вне фазы и высшая точка одной волны встречает низшую точку другой. В этих точках волны нейтрализуют друг друга, что приводит к образованию темной полосы на экране, - деструктивная интерференция. Между этими двумя крайностями комбинация не попадает полностью ни «в фазу», ни «вне фазы» и некоторое количество света остается. Таким образом, мы видим на экране не точную последовательность светлых и темных полос, а плавное изменение интенсивности между максимальными и минимальными точками в интерференционной картине. Это закономерное волнообразное плавное изменение интенсивности является ключевым индикатором волновых феноменов. Есть пример и со звуковыми волнами: музыкант, настраивая инструмент, прислушивается к биениям , которые получаются, если одна нота очень близка по частоте другой, так что по пути к уху музыканта они иногда попадают в фазу или вне фазы. Вариация их сочетаний производит общий звук, громкость которого периодически возрастает и снижается. Плавное изменение интенсивности звука происходит по причине интерференции между двумя отдельными волнами. Отметим, что эти биения представляют собой явление, подчиняющееся законам классической физики, которое не требует квантового толкования.

Ключевым фактором в эксперименте с двумя щелями является то, что пучок света, попадающий на первый экран, должен быть монохромным (состоящим из волн одной длины). Белый свет, который исходит от обычной лампочки, наоборот, состоит из волн различной длины (всех цветов радуги), так что волны будут падать на экран беспорядочно. В таком случае, несмотря на то что пики и низшие точки волн будут взаимодействовать друг с другом, полученная картина будет настолько сложной и размытой, что отдельные полосы будут неразличимы. Подобным образом, несмотря на простоту получения интерференционной картины при бросании в пруд двух камней, огромный водопад, низвергающийся в пруд, образует столько волн, что увидеть какую-либо когерентную интерференционную картину невозможно.

Теперь, на втором этапе опыта с двумя щелями, мы будем использовать не свет, а пули, летящие на экран. Суть в том, что мы используем твердые частицы, а не распространяющиеся волны. Каждая пуля должна, конечно, пройти через одну или другую щель, но не обе одновременно. После того как необходимое количество пуль пройдет через щели, мы увидим на заднем экране две полосы дырок от пуль, соответствующие двум щелям (рис. 4.3).


Рис. 4.3. Опыт с двумя щелями, этап 2. В отличие от поведения световых волн поток летящих через щели пуль демонстрирует поведение частиц. Каждая пуля, попадающая на задний экран, должна пройти через одну или другую щель, но не обе (конечно, принимая во внимание, что середина экрана имеет достаточную толщину, чтобы задержать пули, не попавшие в щели). В отличие от многополосной интерференции картина на заднем экране показывает скопление пуль вокруг двух узких полос, соответствующих каждой щели

Конечно, мы не имеем дела с волнами. Каждая пуля представляет собой отдельную частицу и не взаимодействует с другой, так что интерференции не наблюдается.

А теперь третий этап: квантовый «фокус». Опыт повторяют с использованием атомов вместо пуль. Пучок атомов, исходящий из источника, летит на экран с двумя узкими щелями . Для регистрации попадания атомов второй экран имеет фотолюминесцентное покрытие, на котором проявляется крошечная яркая точка в месте попадания атома.

Если бы на микроскопическом уровне действовал здравый смысл, то атомы повели бы себя как крошечные пули. Сначала мы проведем опыт, открыв только левую щель, и увидим полосу светлых точек на экране позади открытой щели. Определенное количество точек кладется на экран неровно: это может свидетельствовать о том, что некоторые атомы отталкиваются от краев, изменяют траекторию и не проходят строго через щель. Далее мы откроем правую щель и подождем, пока на заднем экране появятся яркие точки.

Если бы вас попросили предсказать распределение ярких точек и вы бы ничего не знали о квантовой механике, вы бы, естественно, догадались, что оно напоминало бы картину, полученную в опыте с пулями. А именно: позади каждой щели образуется полоса точек, то есть на экране возникают два различных светящихся участка, более ярких в центре и постепенно угасающих к краям, поскольку попадания атомов становятся более редкими. Также можно ожидать, что участок посередине между двумя яркими полосами будет темным, так как он соответствует части экрана, непроницаемой для атомов, в какую бы щель они ни попали.

Однако это не соответствует тому, что мы наблюдаем. Наоборот, мы видим очень четкую картину интерференции светлых и темных полос, точно такую же, как в опыте со светом. Верите или нет, но наиболее яркая часть экрана располагается в центре: на участке, на который не должно попадать много атомов (рис. 4.4).


Рис. 4.4. Опыт с двумя щелями, этап 3. При замене пуль на атомы, испускаемые из источника, расположенного перед щелями (разумеется, на каждом этапе подбираются соответствующие ширина и расстояние между щелями), мы вновь наблюдаем волнообразную интерференционную картину. Несмотря на то что каждый атом, попадающий на задний экран в определенной точке, ведет себя как частица, они объединяются в полосы, так же как мы видели в случае света. Почему атомы проходят через две щели одновременно, без чего мы не увидели бы множественных полос интерференции?

Фактически при правильном расстоянии между щелями и правильном расстоянии между двумя экранами мы можем убедиться, что яркий участок на заднем экране (куда атомы могли попасть при одной открытой щели) теперь, при двух открытых щелях, является темным (туда не попадает ни одного атома). Каким образом открытие второй щели, которая позволяет пройти большему количеству атомов, может помешать попаданию атомов на определенные части экрана?

Давайте посмотрим, сможем ли мы объяснить происходящее с помощью обычной логики, не прибегая пока к квантовой механике. Предположим следующее: несмотря на то что каждый атом представляет собой микроскопическую частицу (в конце концов, каждый атом ударяет в экран в одном месте), огромное количество атомов, сталкивающихся и взаимодействующих друг с другом особым согласованным образом, образуют картину с видимостью интерференции. Как бы там ни было, мы знаем, что волны воды на самом деле состоят из множества молекул воды, которые по отдельности не являются волнами. Именно скоординированное движение триллионов молекул воды, а не каждая молекула в отдельности проявляет волнообразные свойства. Возможно, атомная пушка испускает координированный поток атомов подобно волновой установке в бассейне.

Чтобы проверить теорию согласованных атомов, мы повторим эксперимент, но сейчас будем посылать атомы по одному . Мы включаем атомную пушку и ждем появления светящегося пятна на заднем экране, прежде чем включить ее второй раз, и т. д. Сначала может показаться, что здравый смысл все же преобладает: каждый атом, проходящий через щели, оставляет только одно локализованное пятно света в определенной части экрана. Кажется, атомы вылетают из пушки в виде частиц, подобно пулям, и попадают на экран как частицы. Безусловно, в пространстве между пушкой и экраном они также должны вести себя как частицы. Но - внимание - фокус: из шляпы появляется квантовый кролик. По мере того как пятна, каждое из которых регистрирует попадание одного атома-пули, постепенно покрывают экран, на нем вновь появляются светлые и темные полосы интерференции. Поскольку атомы теперь проходят через цель по одному, мы не можем говорить, что существует коллективное поведение множества атомов, сталкивающихся и взаимодействующих между собой. Это не похоже на волны воды. И снова мы сталкиваемся с противоречивым результатом: на заднем экране имеются места, на которые атомы могут попасть только при одной открытой щели и которые остаются полностью темными при открытии также второй щели, несмотря на то что ее открытие предоставляет дополнительный путь попадания атомов на экран. Кажется, что атом, проходя через одну щель, каким-то образом знает , открыта вторая щель или нет, и действует соответствующим образом!

Итак, каждый атом испускается из пушки как крошечная частица и падает на второй экран также как частица, что видно из крошечной вспышки света при его попадании. Но в пространстве между ними, при встрече с двумя щелями, происходит что-то волшебное, подобно распространению волны, которая расщепляется на два компонента, каждый из которых проходит через щель и взаимодействует с другим по другую сторону экрана. Как еще может один атом знать о состоянии (открытом или закрытом) обеих щелей одновременно?

Не забывая о подвохе, давайте посмотрим, можем ли мы поймать атомы, поджидая их позади щелей. Это можно осуществить, разместив датчик за левой щелью, скажем, чтобы он регистрировал «сигнал» (возможно, звуковой сигнал), когда атом будет проходить через эту щель по пути к экрану . Также мы можем поместить второй датчик за правой щелью для регистрации атомов, которые проходят через эту щель. Теперь, если атом проходит через одну или другую щель, мы услышим звуковой сигнал от правого или левого датчика. Но если атом сможет каким-то образом преодолеть свою пулеобразную природу и пройти через обе щели, то оба детектора издадут звуковой сигнал одновременно.

Теперь мы видим, что при каждом включении атомной пушки, которое сопровождается появлением яркой точки на экране, сигнал издает левый или правый датчик, но не оба сразу. Несомненно, теперь мы наконец имеем доказательства, что взаимодействие атомов имеет место при прохождении атомов через одну или другую щель, но не обе одновременно. Однако будем терпеливыми и продолжим наблюдать за экраном. По мере того как отдельные вспышки света объединяются, мы видим, что рисунок, создаваемый ими, уже не похож на интерференционную картину. Вместо нее появляются две яркие полосы, указывающие на скопление множества атомов позади каждой щели, так же как в опыте с пулями. Теперь в ходе эксперимента атомы ведут себя как обычные частицы. Как будто каждый атом ведет себя как волна при встрече со щелями, если за ним не наблюдают, в противном случае он просто остается крошечной частицей.

Возможно, присутствие датчика вызывает проблему, влияя на странное поведение атомов, проходящих через щели. Давайте проверим это, удалив один датчик, скажем, справа. Мы все еще можем получить некоторую информацию из этой схемы, потому что при включении пушки и появлении сигнала и яркого пятна на экране мы будем знать, что атом должен был пройти через левую щель. Когда мы включаем пушку, не слышим сигнала, но видим яркую точку на экране, то мы знаем, что атомы должны были попасть на экран через правую щель. Теперь мы можем знать, прошли атомы через левую или правую щель, но их траектория «нарушается» только с одной стороны. Если датчик сам по себе вызывает проблемы, мы будем ожидать, что атомы, которые вызвали звуковой сигнал, ведут себя как пули, а атомы, которые не вызвали сигнала (и прошли через правую щель), ведут себя как волны. Вероятно, мы увидим смесь пулеобразной картины (от атомов, прошедших через левую щель) и картины интерференции (от атомов, прошедших через правую щель) на экране.

Но это не так. В данной ситуации мы снова не наблюдаем интерференционной картины. На экране позади каждой щели образуется рисунок, выполненный пулеобразными атомами, ведущими себя как частицы. Кажется, что самого присутствия датчика, регистрирующего расположение атома, достаточно для уничтожения его волнового поведения, даже если датчик располагается на некотором расстоянии от траектории атома, проходящего через другую щель!

Возможно, физического присутствия датчика рядом с левой щелью достаточно, чтобы повлиять на прохождение атомов через нее, так же как большой камень изменяет направление воды в стремительном потоке. Мы можем провести эксперимент, выключив левый датчик. Он все еще на своем месте, так что мы можем ожидать, что его влияние будет практически таким же. Но теперь, в присутствии выключенного датчика, на экране опять появляется интерференционная картина! Все атомы, участвующие в опыте, опять стали вести себя как волны. Почему атомы ведут себя как частицы в присутствии включенного датчика около левой щели, но как только датчик выключают, они ведут себя как волны? Как частица, проходящая через правую щель, знает о том, включен или выключен датчик, расположенный слева?

На данном этапе вам придется забыть о логике и здравом смысле. Теперь мы имеем дело с корпускулярно-волновым дуализмом крошечных объектов, таких как атомы, электроны или фотоны, которые ведут себя как волна, если мы не знаем, через какую щель они проходят, и как частица, если мы наблюдаем за ними. Это и есть процесс наблюдения или измерения квантовых объектов, о котором мы говорили в главе 1, рассматривая демонстрацию квантового запутывания отдельных фотонов в эксперименте Алена Аспе. Как вы помните, команда Аспе измеряла фотоны, пропуская их через поляризованную линзу, устранявшую их запутанное состояние - которое является признаком их волновой природы, - заставляя их выбирать одно классическое поляризационное направление. Подобным образом измерение атомов, участвующих в опыте с двумя щелями, заставляет их выбирать между прохождением через правую или левую щель.

Квантовая механика действительно предоставляет нам замечательное логичное обоснование данного феномена; но единственное объяснение увиденного - результата опыта - не о том, что происходит, когда мы не наблюдаем. Однако, поскольку мы можем только видеть и измерять, вероятно, нет смысла требовать от квантовых объектов большего. Как мы можем оценить правомерность или правоту сообщения о феномене, которое мы не сможем никогда, даже в теории, проверить? Как только мы пытаемся это сделать, мы изменяем результат.

Квантовая интерпретация опыта с двумя щелями заключается в том, что в любой данный момент времени каждый атом должен быть описан набором чисел, определяющим его вероятное расположение в пространстве. Это показатель, который мы описывали в главе 2 как волновую функцию. Тогда мы говорили о волновой функции на примере отслеживания волны преступления, распространяющейся по городу путем определения вероятности ограблений в различных районах. Подобным образом волновая функция, описывающая прохождение атома через две щели, прослеживает вероятность обнаружения его в любой точке аппарата в любое заданное время. Но, как мы уточняли ранее, если грабитель должен иметь одно расположение в пространстве и времени и волна «вероятности преступления» описывает только наш недостаток знаний о его действительном расположении, то, наоборот, волновая функция атома в опыте с двумя щелями реальна , то есть она описывает физическое положение атома, который в действительности не имеет конкретного положения, если мы его не измеряем. Атом, таким образом, находится во всех местах одновременно - с переменной вероятностью, конечно, так что мы вряд ли найдем атом в местах, где его волновая функция мала.

Таким образом, вместо отдельных атомов, участвующих в опыте с двумя щелями, мы должны рассматривать волновую функцию, проходящую от источника к заднему экрану. При прохождении через щели волновая функция расщепляется на две и каждая половина проходит через одну из щелей. Отметим: то, что мы описываем здесь, является способом, которым абстрактное математическое число изменяется во времени. Бесполезно спрашивать, что в действительности происходит, так как мы должны посмотреть, чтобы проверить. Но как только мы попытаемся это сделать, мы исказим результат.

Возникает вопрос: когда волновая функция вновь «превращается» в локализованный атом? Ответим: когда мы пытаемся определить его положение. При подобном измерении квантовая волновая функция распадается до единственной вероятности. Опять же это не похоже на ситуацию с грабителем, где неопределенность его местонахождения внезапно сводится к единственной точке, после чего его арестовывает полиция. В этом случае определение повлияло именно на нашу информацию о местонахождении грабителя. Он был всегда только в одном месте в одно время. Но для атома это не так; в отсутствие какого-либо измерения атом действительно находится везде.

Таким образом, квантовая волновая функция рассчитывает вероятность обнаружения атома в конкретном месте, где мы сможем выполнить измерение его положения в данное время. Там, где перед измерением волновая функция велика, полученная вероятность обнаружения атома будет высока. Но там, где она мала, возможно, из-за деструктивной волновой интерференции, соответственно вероятность обнаружения атома, если мы захотим посмотреть, низка.

Мы можем представить волновую функцию, описывающую один атом после его выхода из источника. Он ведет себя как волна, которая стремится к щелям, так что на уровне первого экрана ее амплитуда будет равна в каждой щели. Если мы помещаем датчик к одной из щелей, нам следует ожидать равных вероятностей: 50 % времени мы будем фиксировать атом на левой щели и 50 % времени - на правой щели. Но - и это важно - если мы не пытаемся обнаружить атом на уровне первого экрана, то волновая функция проникает через обе щели без разрушения. Таким образом, в квантовых терминах мы можем говорить о волновой функции, которая описывает один атом в его суперпозиции: его существовании в двух местах одновременно, соответственно его волновой функции, проходящей через правую и левую щели одновременно.

По другую сторону щелей каждая отдельная часть волновой функции, одна из левой и одна из правой щели, снова распространяется и формирует набор математических волн, которые перекрываются, в одних точках усиливая, а в других - нейтрализуя амплитуду друг друга. Комбинированный эффект состоит в том, что волновая функция имеет картину, характерную для других волновых феноменов, таких как свет. Но будем иметь в виду, что эта сложная волновая функция все еще характерна для одного атома.

На втором экране, где осуществляется окончательное измерение положения атома, волновая функция позволяет нам рассчитать вероятность обнаружения частицы в различных точках экрана. Яркие полосы на экране соответствуют тем позициям, где две части волновой функции, исходящей из двух щелей, усиливают друг друга, а темные полосы соответствуют тем позициям, где они нейтрализуют друг друга и образуют нулевую вероятность обнаружения атома в этих позициях.

Важно помнить, что этот процесс усиления и нейтрализации - квантовая интерференция - имеет место даже при участии одной частицы. Помните, что существуют участки на экране, которых атомы, испускаемые одновременно, могут достичь только при одной открытой щели и которые остаются недостижимыми при обеих открытых щелях. Это имеет смысл только тогда, когда каждый атом, выпущенный из атомной пушки, описывается волновой функцией, которая может проходить оба пути одновременно. Комбинированная волновая функция с участками конструктивной и деструктивной интерференции исключает возможность обнаружения атома в некоторых позициях на экране, доступных только при одной открытой щели.

Все квантовые частицы, будь то элементарные частицы или атомы или молекулы, состоящие из этих частиц, демонстрируют волнообразное поведение, так что они могут взаимодействовать друг с другом. В таком квантовом состоянии они могут проявлять любое странное квантовое поведение, такое как нахождение в двух местах одновременно, вращение в обоих направлениях одновременно, прохождение через непроницаемые барьеры или причудливые запутанные связи с отдаленными партнерами.

В таком случае почему вы или я, состоящие из квантовых частиц, не можем быть в двух местах одновременно? Это было бы очень полезно в наше суетливое время. Ответ на это очень прост: чем больше и массивнее тело, тем меньше волновых свойств оно имеет и тело с массой и размерами человека или еще что-то достаточно большое и видимое невооруженным глазом будет иметь такую малую квантовую длину волны, которая не имеет измеримого эффекта. Но, если посмотреть глубже, вы можете подумать, что каждый атом в вашем теле наблюдается, или измеряется, другими атомами вокруг него, так что любые минимальные квантовые свойства, которыми он может обладать, очень быстро разрушаются.

Что же тогда мы подразумеваем под «измерением»? Мы уже кратко ответили на этот вопрос в главе 1, но теперь должны остановиться на нем подробнее, так как это является ключевым моментом в вопросе, насколько велик квантовый компонент в квантовой биологии.

<<< Назад
Вперед >>>

Теперь самое интересное. Картинка усложнилась, но пугаться не стоит. Все очень просто. Поставим перед детекторами (3) и (4) по полупрозрачному зеркалу, как то, что мы использовали вначале. Далее, отправим отраженные фотоны на еще одно полупрозрачное зеркало (слева от источника на схеме). «Холостой» фотон с вероятностью 50% проходит через полупрозрачное зеркало и попадает в детектор (3) или (4) ИЛИ, с вероятностью 50% отражается от ПП, попадает на ПП слева и с 50% вероятностью попадает в (5) или с 50% в (6). Если «холостой» фотон попал в детектор (3) или (4) мы знаем, что исходный фотон прошел соответственно сверху или снизу. Напротив, если сработал детектор (5) или (6) мы не знаем по какому пути прошел фотон. Подчеркну еще раз – при срабатывании (3) или (4) у нас есть информация по какому пути прошел фотон. При срабатывании (5) или (6) такой информации нет. Этой замысловатой схемой мы стираем информацию о том, по какому пути прошел фотон.

Теперь самый ошеломительный результат – если выделить на экране те точки, которые появились при срабатывании (3) или (4) – интерференции нет, но если выделить подмножество точек, которые получались при срабатывании (5) или (6), то они образуют интерференционную картину! Задумайтесь на минуту над этим результатом: фотону не важно, «трогаем» мы его или нет во время эксперимента. С помощью даун–конверторов мы получаем потенциальную информацию о том, где прошел фотон. Если она реализуется (детекторы (3) или (4)) – картина разрушается, но если мы аккуратно стираем ее (срабатывают детекторы (5) или (6)), то нам удается уговорить фотон проинтерферировать. Интерференцию разрушает не механическое вторжение в эксперимент, а наличие информации. Ученые утверждают, что подобные эксперименты проводились не только с фотонами, электронами, но и с целыми молекулами.

Законы нашего мира очень странные и порой контр интуитивны. На макроскопическом уровне может казаться, будто более–менее все понятно. Но стоит начать нам иметь дело с элементарными частицами, как весь наш повседневный опыт рушится. А что нас ждет на планковских масштабах, не смогут предположить даже самые смелые фантасты.

Известно, что до конца своей жизни Альберт Эйнштейн так и не принял квантовую механику с ее неопределенностью, стохастическими, случайными и хаотическими процессами. Это неприятие выразилось в фразах Эйнштейна: «Бог не играет в кости» и «Неужели Луна существует только потому, что на нее смотрит мышь?». Т.е. Эйнштейн стоял на четкой позиции детерминизма физических, в том числе и квантовых процессов. Эйнштейн просто считал, что физики не обнаружили еще те постоянные, которые влияют на поведение квантовых частиц.

P.S.: Этот эксперимент вовсе не мысленный, а вполне реальный и был осуществлен, хоть и выглядел запутаннее и сложнее, чем я здесь описал.

error: