Типы равновесных систем применяемых в аналитической химии. Задачи изучения дисциплины: развитие коммуникативных и социокультурных способностей и качеств; овладение умениями и навыками самосовершенствования. Структура дисциплины (1). Теоретические основы а

I. Химия и медицина

1. Предмет, цели и задачи аналитической химии. Краткий исторический очерк развития аналитической химии. Место аналитической химии среди естественных наук и в системе медицинского образования.

Аналитическая химия – наука о методах определения состава веществ. Предмет ее - решение общих проблем теории химического анализа, совершенствование существующих и разработка новых, более быстрых и точных методов анализа (т.е теория и практика хим. анализа). Задача - развитие теории химических и физико-химических методов анализа, процессов и операций в научном исследовании, совершенствование старых методов анализа, разработка экспрессных и дистанционных м.а, разработка методов ультра- и микроанализа.

В зависимости от объекта исследования аналитическую химию делят на неорганический и органический анализ . Аналитическая химия относится к прикладным наукам. Практическое значение ее весьма разнообразно. С помощью методов химического анализа были открыты некоторые законы - закон постоянства состава, закон кратных отношений, определены атомные массы элементов,

химические эквиваленты, установлены химические формулы многих соединений и т. д.

Аналитическая химия в значительной степени способствует развитию естественных наук: геохимии, геологии, минералогии, физики, биологии, агрохимии, металлургии, химической технологии, медицины и др.

Предмет качественного анализа - развитие теоретических основ, усовершенствование существующих и разработка новых, более совершенных методов определения элементарного состава веществ. Задача качественного анализа - определение “качества” веществ или обнаружение отдельных элементов или ионов, входящих в состав исследуемого соединения.

Качественные аналитические реакции по способу их выполнения делятся на реакции “мокрым” и “сухим” путем . Наибольшее значение имеют реакции “мокрым” путем. Для проведения их исследуемое вещество должно быть предварительно растворено.

В качественном анализе находят применение только те реакции, которые сопровождаются какими-либо хорошо заметными для наблюдателя внешними эффектами: изменением окраски раствора; выпадением или растворением осадка; выделением газов, обладающих характерным запахом или цветом.

Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями “открытия ”, так как с их помощью обнаруживаются присутствующие в растворе ионы.

Широко используются также реакции идентификации , с помощью которых проверяется правильность “открытия” того или иного иона. Наконец, применяются реакции осаждения, с помощью которых обычно отделяется одна группа ионов от другой или один ион от других ионов.

В зависимости от количества анализируемого вещества, объема раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро-, микро-, полумикро- и ультрамикроанализ и др.

II. Качественный анализ

2. Основные понятия аналитической химии. Типы аналитических реакций и реагентов. Требования, предъявляемые к анализу, чувствительности, селективности определения состава веществ.

Аналитическая реакция - хим. реакция, используемая для разделения, обнаружения и количественного определения элементов, ионов, молекул. Она должна сопровождаться аналитическим эффектом (выпадением осадка, выделением газа, изменением окраски, запаха).

По типу химических реакций:

Общие – аналитические сигналы одинаковы для многих ионов. Реагент – общий. Пример: осаждение гидроксидов, карбонатов, сульфидов и т.д.

Групповые – аналитические сигналы характерны для определенной группы ионов, обладающих близкими свойствами. Реагент – групповой. Пример: осаждение ионов Ag + , Pb 2+ реагентом – соляной кислотой с образованием белых о садков AgCl, PbCl 2

Общие и групповые реакции применяют для выделения и разделения ионов сложной смеси.

Селективные – аналитические сигналы одинаковы для ограниченного количества ионов. Реагент – селективный. Пример: при действии реагента NH 4 SCN на смесь катионов только два катиона образуют окрашенные комплексные со единения: кроваво-красное 3-

и синее 2-

Специфические – аналитический сигнал характерен только для одного иона. Реагент – специфический. Таких реакций крайне мало.

По типу аналитического сигнала:

Цветные

Осадительные

Газовыделительные

Микрокристаллические

По функции:

Реакции обнаружения (идентификации)

Реакции разделения (отделения) для удаления мешающих ионов путем осаждения, экстракции или возгонки.

По технике выполнения:

Пробирочные – выполнятся в пробирках.

Капельные выполняются:

На фильтровальной бумаге,

На часовом или предметном стекле.

При этом на пластинку или на бумагу наносят 1-2 капли анализируемого раствора и 1-2 капли реагента, дающего характерное окрашивание или образование кристаллов. При выполнении реакций на фильтровальной бумаге используются адсорбционные свойства бумаги. Капля жидкости, нанесенная на бумагу, быстро рассасывается по капиллярам, а окрашенное соединение адсорбируется на небольшой площади листа. При наличии в растворе нескольких веществ скорость движения их может быть различной, что дает распределение ионов в виде концентрических зон. В зависимости от произведения растворимости осадка – или в зависимости константы устойчивости комплексных соединений: чем больше их значения, тем ближе к центру или в центре определенная зона.

Капельный метод разработал советский ученый-химик Н.А. Тананаев.

Микрокристаллические реакции основаны на образовании химических соединений, имеющих характерную форму, цвет и светопреломляющую способность кристаллов. Они выполняются на предметных стеклах. Для этого на чистое стекло наносят капиллярной пипеткой 1-2 капли анализируемого раствора и рядом 1-2 капли реагента, осторожно соединяют их стеклянной палочкой, не перемешивая. Затем с текло помещают на предметный столик микроскопа и рассматривают осадок, образовавшийся на месте

соприкосновения капель.

Для правильного использования в аналитике реакций следует учитывать чувствительность реакции . Она определяется наименьшим количеством искомого вещества, которое может быть обнаружено данным реактивом в капле раствора (0,01-0,03 мл). Чувствительность выражается рядом величин:

    Открываемый минимум - наименьшее количество вещества, содержащееся в исследуемом растворе и открываемое данным реактивом при определенных условиях выполнения реакции.

    Минимальная (предельная) концентрация показывает при какой наименьшей концентрации раствора данная реакция позволяет еще однозначно открывать обнаруживаемое вещество в небольшой порции раствора.

    Предельное разбавление - максимальное количество разбавителя, при котором еще определяется вещество.

Вывод: аналитическая реакция тем чувствительней, чем меньше открываемый минимум, меньше минимальная концентрация, но чем больше предельное разбавление.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Аналитические реакции в растворах Аналитические реакции в растворах, обратимые и необратимые Химическое равновесие Закон действующих масс, константа химического равновесия Факторы, влияющие на смещение равновесия аналитических реакций

2 слайд

Описание слайда:

Типы химических реакций в аналитической химии кислотно-оснóвные реакции – реакции с переносом протона Н+ окислительно-восстановительные реакции (ОВР) – реакции с переносом электрона ē реакции комплексообразования – реакции с переносом электронных пар и образованием связей по донорно-акцепторному механизму реакции осаждения – гетерогенные реакции в растворе

3 слайд

Описание слайда:

В количественном анализе широко используются обратимые реакции, т.е. протекающие одновременно в двух противоположных направлениях: аА + вВ ↔ сС + дД Реакцию, протекающую в сторону образования продуктов реакции называют прямой аА + вВ → сС + дД Реакцию, протекающую в сторону образования исходных веществ – обратной сС + дД → аА + вВ В принципе, все реакции, протекающие в природе, являются обратимыми, но в тех случаях, когда обратная реакция выражена очень слабо, реакции считаются практически необратимыми. К ним относят обычно те реакции, при протекании которых один из образующихся продуктов уходит из сферы реакции, т.е. выпадают в осадок, выделяются в виде газа, образуется малодиссоциируемое вещество (например, вода), реакция сопровождается выделением большого количества тепла.

4 слайд

Описание слайда:

Состояние химического равновесия характерно лишь для обратимых процессов. В обратимых реакциях скорость прямой реакции вначале имеет максимальное значение, а затем снижается вследствие уменьшения концентрации исходных веществ, расходующихся на образование продуктов реакции. Обратная реакция в начальный момент имеет минимальную скорость, которая растет по мере увеличения концентраций продуктов реакции. Таким образом, наступает момент, когда скорости прямой и обратной реакции становятся равными. Такое состояние системы называется химическим равновесием kпр=kобр

5 слайд

Описание слайда:

В 1864 − 1867 г норвежские ученые Гульдберг и Вааге установили закон действующих масс (под действующими массами они подразумевали концентрации. Тогда термин концентрация еще не был известен, его ввел позднее Вант−Гофф): скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных соответствующим стехиометрическим коэффициентам. Для обратимой реакции типа aA + вB = cC + дД согласно закону действия масс скорости прямой и обратной реакции соответственно равны: vпр = kпр[A]a[B]в, vобр = kобр[C]c[Д]д. Если vпр = vобр, то kпр[A]a[B]в = kобр[C]c[Д]д, откуда К = kобр / kпр = [C]c[Д]д / [A]a[B]в. Таким образом, константа равновесия – отношение произведения концентраций продуктов реакции к произведению концентраций исходных веществ. Константа равновесия – величина безразмерная, т.к. зависит от концентрации и количества веществ.

6 слайд

Описание слайда:

Величина К, характеризующая при постоянной температуре постоянство соотношений равновесных концентраций реагентов, была названа Вант−Гоффом константой равновесия. Константа равновесия является одной из количественных характеристик состояния химического равновесия. Задание: написать выражение для константы равновесия следующих реакций: H2+I2 ↔ 2HI ; K= 2 / N2+3H2 ↔ 2NH3; K= 2 / 3

7 слайд

Описание слайда:

Направление смещения химического равновесия при изменениях концентрации, температуры и давления определяется принципом Ле – Шателье: если на систему, находящуюся в равновесии, произвести воздействие (изменение концентрации, температуры, давления), то равновесие в системе смещается в сторону ослабления этого воздействия ЛЕ ШАТЕЛЬЕ Анри Луи

8 слайд

Описание слайда:

Для реакции А+В ↔ С+D Изменение концентрации если увеличивается концентрация исходных веществ, то равновесие смещается в сторону образования продуктов реакции, т.е. вправо А+В → С+D, если уменьшается концентрация исходных веществ, то равновесие смещается в сторону исходных веществ, т.е. влево А+В ← С+D если увеличивается концентрация продуктов реакции, то равновесие смещается в сторону образования исходных веществ, т.е. влево А+В ← С+D, если уменьшается концентрация продуктов реакции, то равновесие смещается в сторону образования продуктов реакции, т.е. вправо, А+В → С+D

9 слайд

Описание слайда:

Для реакции А+В ↔ С+D 2) Изменение температуры определяется тепловым эффектом реакции при экзотермическом процессе (отрицательное значение реакции) - если температура уменьшается, то равновесие смещается в сторону образования продуктов реакции, т.е. вправо А+В → С+D, если температура увеличивается, то равновесие смещается в сторону исходных веществ, т.е. влево А+В ← С+D при эндотермическом процессе (положительное значение реакции) – если температура увеличивается, то равновесие смещается в сторону образования продуктов реакции, т.е. вправо А+В → С+D, если температура уменьшается, то равновесие смещается в сторону образования исходных веществ, т.е. влево А+В ← С+D

Программа дисциплины для студентов факультета фундаментальной медицины МГУ

(специальность «Фармация»)

Введение
Предмет аналитической химии, её место в системе наук, связь с практикой. Аналитическая химия и химический анализ. Метод, методика и средства химического анализа. Виды анализа: качественный и количественный; изотопный, элементный, структурно-групповой (функциональный), молекулярный, вещественный, фазовый анализ; валовый (локальный), деструктивный (недеструктивный), дискретный (непрерывный), контактный (дистанционный); макро-, полумикро-, микро- и ультрамикроанализ. Химические, физические и биологические методы анализа. Классические, инструментальные методы анализа. Основные этапы химического анализа. Выбор метода анализа и составление схем анализа. Объекты анализа.
Современное состояние и тенденции развития аналитической химии: инструментализация, автоматизация, математизация, миниатюризация, увеличение доли и роли физических методов, переход к многокомпонентному анализу, создание сенсоров и тест-методов.
Значение аналитической химии для фармации. Краткий очерк развития аналитической химии и фармацевтических наук в исторических параллелях. Фармацевтический анализ. Фармакопейные методы.

Метрологические основы химического анализа
Аналитический сигнал и помехи. Контрольный опыт. Абсолютные (безэталонные) и относительные методы анализа. Единичные и параллельные определения. Способы определения содержания вещества по данным аналитических измерений (метод градуировочного графика, метод стандартов, метод добавок). Основные характеристики метода анализа: точность (правильность и воспроизводимость), чувствительность (коэффициент чувствительности, предел обнаружения, нижняя и верхняя границы определяемых содержаний) и селективность.
Погрешности химического анализа: абсолютные и относительные; систематические и случайные; грубые промахи. Погрешности отдельных стадий химического анализа. Способы оценки правильности: применение стандартных образцов, метод добавок, метод варьирования навесок, сопоставление с другими методами. Стандартные образцы, их изготовление, аттестация и использование.
Статистическая обработка результатов измерений. Закон нормального распределения случайных погрешностей, t - и F -распределения. Некоторые понятия математической статистики: объём выборки (генеральная и выборочная совокупность); среднее, дисперсия, стандартное отклонение, относительное стандартное отклонение, доверительная вероятность, доверительный интервал. Сходимость и повторяемость. Оценка допустимого расхождения результатов параллельных определений. Сравнение дисперсий и средних двух методов анализа.
Регрессионный анализ. Использование метода наименьших квадратов для построения градуировочных функций. Примеры метрологической обработки и представления результатов количественного фармацевтического анализа. Требования к метрологической оценке в зависимости от объекта и цели анализа. Способы повышения воспроизводимости и правильности анализа.

Типы химических реакций и процессов в аналитической химии
Основные типы химических реакций в аналитической химии: кислотно-основные, комплексообразования, окисления-восстановления. Используемые процессы: осаждение-растворение, экстракция, сорбция. Константы равновесия реакций и процессов. Состояние веществ в идеальных и реальных системах. Поведение электролитов и неэлектролитов в растворах. Коэффициенты активности. Теория Дебая-Хюккеля и ее ограничения. Концентрационные константы. Описание сложных равновесий. Общая и равновесная концентрации. Условные константы.
Скорость реакций в химическом анализе. Факторы, влияющие на скорость. Катализаторы, ингибиторы. Автокаталитические реакции. Индуцированные и сопряженные реакции. Примеры ускорения и замедления реакций и процессов, используемых в химическом анализе.
Кислотно-основные реакции. Современные представления о кислотах и основаниях. Теория Бренстеда-Лоури. Равновесие в системе кислота - сопряженное основание и растворитель. Гидролиз как частный случай кислотно-основного равновесия. Константа и степень гидролиза. Константы кислотности и основности. Кислотные и основные свойства растворителей. Константа автопротолиза. Влияние природы растворителя на силу кислоты и основания. Нивелирующий и дифференцирующий эффект растворителя.
Кислотно-основное равновесие в многокомпонентных системах. Буферные растворы и их свойства. Буферная емкость. Использование буферных систем в анализе. Вычисления рН растворов незаряженных и заряженных кислот и оснований, многоосновных кислот и оснований, смесей кислот и оснований.
Реакции комплексообразования . Теория Льюиса-Пирсона. Типы комплексных соединений, используемых в аналитической химии. Классификация комплексных соединений по характеру взаимодействия металл-лиганд, по однородности лиганда и центрального иона (комплексообразователя). Свойства комплексных соединений, имеющие аналитическое значение: устойчивость, растворимость, летучесть, спектральные характеристики.
Ступенчатое комплексообразование. Количественные характеристики комплексных соединений: константы устойчивости (ступенчатые и общие), степень образования комплекса. Факторы, влияющие на комплексообразование: строение центрального атома и лиганда, концентрация компонентов, рН, ионная сила раствора, температура. Термодинамическая и кинетическая устойчивость комплексных соединений.
Влияние комплексообразования на растворимость соединений, кислотно-основное равновесие, окислительно-восстановительный потенциал систем, стабилизацию различных степеней окисления элементов. Способы повышения чувствительности и избирательности анализа с использованием комплексных соединений.
Теоретические основы взаимодействия органических реагентов с неорганическими ионами. Влияние их природы, расположения функционально-аналитические групп, стереохимии молекул реагента на его взаимодействие с неорганическими ионами. Теория аналогий взаимодействия ионов металлов с неорганическими реагентами типа H 2 O, NH 3 и H 2 S и кислород-, азот-, серосодержащими органическими реагентами. Основные типы соединений, образуемых с участием органических реагентов. Хелаты, внутрикомплексные соединения. Факторы, определяющие устойчивость хелатов. Важнейшие органические реагенты, применяемые в анализе для разделения, обнаружения, определения ионов металлов, для маскирования и демаскирования. Органические реагенты для фармацевтического анализа. Возможности использования комплексных соединений и органических реагентов в различных методах анализа.
Окислительно-восстановительные реакции . Электродный потенциал. Уравнение Нернста и его связь с законами химической термодинамики. Стандартный и формальный потенциалы. Связь константы равновесия со стандартными потенциалами. Направление реакций окисления-восстановления. Факторы, влияющие на направление окислительно-восстановительных реакций. Понятие о смешанных потенциалах. Механизмы окислительно-восстановительных реакций и их значение для аналитической химии.
Основные неорганические и органические окислители и восстановители, применяемые в анализе. Методы предварительного окисления и восстановления определяемого элемента.
Процессы осаждения и соосаждения. Равновесие в системе раствор ¾ осадок. Осадки и их свойства. Схема образования осадка. Кристаллические и аморфные осадки. Зависимость структуры осадка от его индивидуальных свойств и условий осаждения. Зависимость формы осадка от скорости образования и роста первичных частиц. Константы растворимости малорастворимого сильного электролита (термодинамическая, реальная и условная). Способы выражения растворимости малорастворимых электролитов. Факторы, влияющие на растворимость осадков: температура, ионная сила, действие одноименного иона, реакции протонизации, комплексообразования, окисления-восстановления, структура и размер частиц. Условия получения кристаллических осадков. Гомогенное осаждение. Полное и дробное осаждение, дробное растворение. Старение осадка. Причины загрязнения осадка. Классификация различных видов соосаждения. Положительное и отрицательное значение явления соосаждения в анализе. Особенности образования коллоидно-дисперсных систем. Использование коллоидных систем в химическом анализе.

Методы обнаружения и идентификации
Задачи и выбор метода обнаружения и идентификации атомов, ионов и химических соединений. Качественный химический анализ. Аналитические признаки веществ и аналитические реакции. Типы аналитических реакций и реагентов (специфические, селективные, групповые). Характеристики чувствительности качественных аналитических реакций (предельное разбавление, предельная концентрация, минимальный объём предельно разбавленного раствора, предел обнаружения, показатель чувствительности).
Дробный и систематический анализ. Качественный анализ катионов. Классификация катионов по аналитическим группам в соответствии с сероводородной (сульфидной), аммиачно-фосфатной, кислотно-основной схемами анализа. Систематический анализ катионов по кислотно-основной схеме. Аналитические реакции катионов различных аналитических групп. Качественный анализ анионов. Классификация анионов по аналитическим группам (по способности к образованию малорастворимых соединений, по окислительно-восстановительным свойствам). Систематический анализ анионов по кислотно-основной схеме. Аналитические реакции анионов различных аналитических групп. Качественный анализ смесей катионов и анионов, лекарственных средств.
Микрокристаллоскопический анализ, пирохимический анализ (окрашивание пламени, возгонка, образование перлов). Капельный анализ. Анализ растиранием порошков. Хроматографические методы качественного анализа. Физические методы обнаружения и идентификациинеорганических и органических веществ.Экспрессный качественный анализ в заводских и полевых условиях. Тест-методы и тест-средства. Примеры практического применения методов обнаружения. Использование качественного анализа в фармации.

Методы выделения, разделения и концентрирования
Основные методы разделения и концентрирования, их роль в химическом анализе. Сочетание методов разделения и концентрирования с методами определения; гибридные методы. Одноступенчатые и многоступенчатые процессы разделения. Константы распределения. Коэффициент распределения. Степень извлечения. Фактор разделения. Коэффициент концентрирования.
Методы экстракции . Теоретические основы методов. Закон распределения Нернста-Шилова. Классификация экстракционных процессов. Скорость экстракции. Типы экстракционных систем: неионизированные соединения (молекулярные вещества, хелатные соединения, комплексы металлов со смешанной координационной сферой, включающей неорганический лиганд и нейтральный экстракционный реагент) и ионные ассоциаты (металлсодержащие кислоты и их соли, минеральные кислоты, координационно-несольватированные ионные ассоциаты, гетерополисоединения, экстрагируемые кислородсодержащими растворителями, прочие ионные ассоциаты). Условия экстракции неорганических и органических соединений. Реэкстракция. Природа и характеристика экстрагентов. Разделение и концентрирование элементов методом экстракции. Основные органические реагенты, используемые для разделения элементов методом экстракции. Селективное разделение элементов методом подбора органических растворителей, изменения рН водной фазы, маскирования и демаскирования. Использование процессов экстракции в фармацевтическом анализе.
Методы осаждения и соосаждения . Применение неорганических и органических реагентов для осаждения. Способы разделения осаждением либо растворением при различных значениях рН, за счет образования комплексных соединений и применения окислительно-восстановительных реакций. Групповые реагенты и предъявляемые к ним требования. Характеристики малорастворимых соединений, наиболее часто используемых в анализе. Концентрирование микроэлементов соосаждением на неорганических и органических носителях (коллекторах).
Другие методы. Отгонка (дистилляция, возгонка). Ионный обмен. Понятие об электрофорезе.

Хроматографические методы анализа
Определение хроматографии. Понятие о подвижной и неподвижной фазах. Классификация методов по агрегатному состоянию подвижной и неподвижной фаз, по механизму разделения, по технике выполнения, по цели и задачам анализа. Способы получения хроматограмм (фронтальный, вытеснительный, элюентный). Основные параметры хроматограммы. Основное уравнение хроматографии. Селективность и эффективность хроматографического разделения. Теория теоретических тарелок. Кинетическая теория. Качественный и количественный хроматографический анализ.
Газовая хроматография . Газо-адсорбционная (газо-твердофазная) и газо-жидкостная хроматография . Сорбенты и носители, требования к ним. Механизм разделения. Схема газового хроматографа. Колонки. Детекторы, их чувствительность и селективность. Понятие о хромато-масс-спектрометрии. Области применения газовой хроматографии. Достоинства и недостатки газовой хроматографии.
Жидкостная колоночная хроматография . Виды жидкостной хроматографии. Преимущества высокоэффективной жидкостной хроматографии (ВЭЖХ). Схема жидкостного хроматографа. Насосы, колонки. Основные типы детекторов, их чувствительность и селективность. Достоинства и недостатки ВЭЖХ.
Адсорбционная и распределительная жидкостная хроматография . Нормально-фазовый и обращенно-фазовый варианты. Полярные и неполярные неподвижные фазы и принципы их выбора. Модифицированные силикагели как сорбенты. Подвижные фазы и принципы их выбора. Области применения жидкостной хроматографии.
Ионная и ионообменная хроматография . Строение и физико-химические свойства ионообменников. Ионообменное равновесие. Селективность ионного обмена и факторы его определяющие. Области применения ионообменной хроматографии. Особенности строения и свойства сорбентов для ионной хроматографии. Одноколоночная и двухколоночная ионная хроматография, их преимущества и недостатки. Ионохроматографическое определение катионов и анионов.
Ион-парная и лигандообменная хроматография. Общие принципы. Подвижные и неподвижные фазы. Области применения.
Эксклюзионная хроматография . Общие принципы метода. Особенности неподвижных фаз и механизма разделения. Определяемые вещества и области применения метода.
Плоскостная хроматография . Общие принципы разделения. Способы получения плоскостных хроматограмм (восходящий, нисходящий, круговой, двумерный). Реагенты для проявления хроматограмм. Преимущества и недостатки.
Тонкослойная хроматография. Механизмы разделения. Сорбенты и подвижные фазы. Области применения.
Бумажная хроматография. Механизмы разделения. Требования к бумаге для проведения хроматографического анализа. Подвижные фазы. Области применения.
Использование различных хроматографических методов в фармацевтическом анализе.

Гравиметрический метод анализа
Сущность гравиметрического анализа, преимущества и недостатки метода. Прямые и косвенные методы определения. Методы отгонки и осаждения. Важнейшие органические и неорганические осадители. Погрешности в гравиметрическом анализе. Общая схема определений. Требования к осаждаемой и гравиметрической формам. Изменения состава осадка при высушивании и прокаливании. Термогравиметрический анализ.
Аналитические весы. Чувствительность весов и ее математическое выражение. Факторы, влияющие на точность взвешивания. Техника взвешивания.
Примеры практического применения гравиметрического метода анализа.Определение воды в фармацевтических препаратах. Определение элементов (железа. алюминия, титана) в виде оксидов. Определение кальция и магния; источники погрешностей при их определении. Определение серы, галогенов в неорганических и органических соединениях. Различные методы определения фосфора и кремния. Применение органических реагентов для определения никеля, кобальта, цинка и магния.

Титриметрические методы анализа
Методы титриметрического анализа. Классификация. Требования, предъявляемые к реакции в титриметрическом анализе (общие и специальные, зависящие от конкретного титриметрического метода). Виды титриметрических определений (прямые, обратные, косвенные). Способы определения концентрации титруемого вещества (способы отдельных навесок и пипетирования). Способы выражения концентраций растворов в титриметрии. Эквивалент, молярная масса эквивалента, молярная концентрация, молярная концентрация эквивалента, титр, титриметрический фактор пересчёта (титр по определяемому веществу), поправочный коэффициент. Первичные и вторичные стандартные растворы. Фиксаналы. Кривые титрования, их основные параметры и связь с основными законами химического равновесия, виды кривых титрования. Факторы, влияющие на характер кривых титрования и величину скачка титрования в различных методах. Точка эквивалентности. Точка электронейтральности. Способы определения конечной точки титрования в различных методах. Индикаторы. Интервалы изменения окраски индикаторов. Современные методы титриметрического анализа и приборы.
Кислотно-основное титрование . Построение кривых титрования. Влияние величин констант кислотности или основности, концентрации кислот или оснований, температуры на характер кривых титрования. Кислотно-основное титрование в неводных средах. Факторы, определяющие выбор неводного растворителя. Кислотно-основные индикаторы. Ионно-хромофорная теория кислотно-основных индикаторов. Погрешности титрования при определении сильных и слабых кислот и оснований, многоосновных кислот и оснований.
Примеры практического применения. Первичные стандартные растворы для установления концентрации растворов кислот и оснований. Приготовление и стандартизация растворов соляной, серной кислот и гидроксида натрия. Титрование кислот, оснований, смесей кислот и смесей оснований, амфолитов. Анализ смесей карбоната и гидрокарбоната натрия, карбоната и гидроксида натрия. Определение азота по методу Кьельдаля и солей аммония прямым и косвенным методами. Определение нитратов и нитритов; формальдегида. Применение кислотно-основного титрования в неводных средах (определение борной и соляной кислот в их смеси, аминокислот).
Окислительно-восстановительное титрование. Кривые титрования: расчёт, построение, анализ. Влияние концентрации ионов водорода, комплексообразования, образования и растворения малорастворимых соединений, ионной силы раствора на характер кривых титрования. Способы определения конечной точки титрования. Индикаторы в окислительно-восстановительных процессах. Погрешности титрования.
Методы окислительно-восстановительного титрования. Перманганатометрия. Определение железа(II), оксалатов, пероксида водорода, нитритов. Дихроматометрия. Определение железа(II).
Иодометрия и иодиметрия. Система иод-иодид как окислитель или восстановитель. Определение арсенитов, арсенатов, железа(III), меди(II), галогенид-ионов, пероксидов,кислот. Определение воды и функциональных групп органических соединений.
Хлориодометрия, иодатометрия, бромометрия, броматометрия, цериметрия, нитритометрия. Первичные и вторичные стандартные растворы методов, используемые индикаторы. Определение неорганических и органических соединений.
Применение методов окислительно-восстановительного титрования в фармацевтическом анализе.
Комплексометрическое титрование. Неорганические и органические титранты в комплексометрии. Меркуриметрическое титрование. Сущность метода. Индикаторы метода. Применение меркуриметрии.
Использование аминополикарбоновых кислот в комплексонометрии. Построение кривых титрования. Металлохромные индикаторы и требования, предъявляемые к ним. Важнейшие универсальные и специфические металлохромные индикаторы. Способы комплексонометрического титрования: прямое, обратное, косвенное. Селективность титрования и способы ее повышения. Погрешности титрования. Примеры практического применения: определение кальция, магния, железа, алюминия, меди, цинка в растворах чистых солей и при совместном присутствии.
Осадительное титрование . Методы осадительного титрования: аргентометрия (методы Гей-Люссака, Мора, Фаянса-Фишера-Ходакова, Фольгарда), тиоцианатометрия, меркурометрия, гексацианоферратометрия, сульфатометрия, бариметрия. Первичные и вторичные стандартные растворы различных методов осадительного титрования, их приготовление, стандартизация. Кривые осадительного титрования, их расчёт, построение, анализ. Способы определения конечной точки титрования; осадительные, металлохромные, адсорбционные индикаторы. Погрешности осадительного титрования: их происхождение, расчёт, способы устранения. Примеры практического использования различных методов осадительного титрования в фармацевтическом анализе.
Другие титриметрические методы анализа . Термометрическое, радиометрическое титрование. Сущность методов, практическое применение.

Электрохимические методы анализа
бщая характеристика методов. Классификация. Электрохимические ячейки. Индикаторные электроды и электроды сравнения. Равновесные и неравновесные электрохимические системы. Явления, возникающие при протекании тока (омическое падение напряжения, концентрационная и кинетическая поляризация).

Потенциометрия
Прямая потенциометрия
. Измерение потенциала. Обратимые и необратимые окислительно-восстановительные системы. Индикаторные электроды: металлические и ионселективные. Ионометрия. Классификация ионселективных электродов. Уравнение Никольского-Эйзенмана. Характеристики ионселективных электродов: электродная функция, крутизна электродной функции, предел обнаружения, потенциометрический коэффициент селективности, время отклика. Примеры практического применения ионометрии. Определение рН, ионов щелочных и щелочноземельных металлов, галогенид- и нитрат-ионов.
Потенциометрическое титрование . Изменение электродного потенциала в процессе титрования. Способы обнаружения конечной точки титрования в реакциях: кислотно-основных, комплексообразования, окисления-восстановления; процессах осаждения.
Примеры практического применения. Титрование фосфорной, смесей соляной и борной, соляной и уксусной кислот в водной и водно-органических средах. Определение иодидов и хлоридов при совместном присутствии.
Кулонометрия
Теоретические основы метода. Законы Фарадея. Прямая кулонометрия и кулонометрическое титрование. Условия проведения кулонометрических измерений при постоянном потенциале и постоянном токе. Способы определения количества электричества в прямой кулонометрии и кулонометрическом титровании. Внешняя и внутренняя генерация кулонометрического титранта. Титрование электроактивных и электронеактивных компонентов. Определение конечной точки титрования. Преимущества и ограничения метода кулонометрического титрования по сравнению с другими титриметрическими методами. Применение кулонометрического титрования для определения малых количеств кислоты и щелочи, тиосульфата натрия, окислителей-ионов металлов, воды.

Вольтамперометрия
Классификация вольтамперометрических методов. Индикаторные электроды. Получение и характеристика вольтамперной кривой. Предельный диффузионный ток. Полярография. Уравнение Ильковича. Уравнение полярографической волны Ильковича - Гейровского. Потенциал полуволны. Идентификация и определение неорганических и органических соединений. Современные виды вольтамперометрии: прямая и инверсионная, переменнотоковая; хроноамперометрия с линейной разверткой (осциллография). Преимущества и ограничения по сравнению с классической полярографией. Регистрация и расшифровка полярограммы индивидуального деполяризатора ¾ иона металла. Регистрация полярографического спектра. Определение концентрации веществ методом градуировочного графика и методом добавок с использованием классической, осциллографической, переменнотоковой полярографии.
Амперометрическое титрование. Сущность метода. Индикаторные электроды. Выбор потенциала индикаторного электрода. Виды кривых титрования. Понятие об амперометрическом титровании с двумя индикаторными электродами. Амперометрическое титрование неорганических и органических веществ.
Примеры практического применения вольтамперометрических методов и амперометрического титрования в фармацевтическом анализе.

Кондуктометрия
Сущность метода. Прямая кондуктометрия и кондуктометрическое титрование. Постояннотоковая и переменнотоковая; контактная и бесконтактная кондуктометрия. Определение концентрации анализируемого раствора по данным измерения электропроводности (расчётный метод, метод градуировочного графика). Кондуктометрическое титрование. Понятие о высокочастотном кондуктометрическом титровании. Виды кривых кислотно-основного и осадительного кондуктометрического титрования. Достоинства и недостатки кондуктометрии.
Сравнительная характеристика чувствительности и избирательности, областей применения электрохимических методов.

Спектроскопические методы анализа
Место и роль спектроскопических методов в аналитической химии и химическом анализе. Сравнительная характеристика чувствительности и избирательности, областей применения спектроскопических методов.
Электромагнитное излучение и его характеристики. Спектр электромагнитного излучения. Основные типы взаимодействия вещества с излучением: поглощение, эмиссия (тепловая, люминесценция), рассеяние, светопреломление, отражение. Классификация спектроскопических методов по энергии. Классификация спектроскопических методов на основе спектра электромагнитного излучения и объекта: атомная, молекулярная, абсорбционная, эмиссионная спектроскопия.
Энергетические переходы. Правила отбора. Законы испускания и поглощения, уравнения Эйнштейна. Вероятности переходов и времена жизни возбужденных состояний. Основные виды светорассеяния (Релея-Ми и Тиндаля), комбинационное рассеяние. Основные законы поглощения (Бугера-Ламберта) и излучения электромагнитного излучения (Больцмана, Мозли). Связь аналитических сигналов с концентрацией определяемого соединения.
Спектры атомов. Основные и возбужденные состояния атомов, характеристики состояний. Характеристики атомных спектральных линий: положение в спектре, интенсивность, ширина. Факторы, влияющие на ширину атомных линий.
Спектры молекул; их особенности. Схемы электронных уровней молекулы. Представление о полной энергии молекул как суммы электронной, колебательной и вращательной. Связь химической структуры соединения с молекулярными спектрами. Функциональный анализ по колебательным и электронным спектрам.
Аппаратура. Источники излучения. Способы монохроматизации электромагнитного излучения. Классификация спектральных приборов, их характеристики. Приемники излучения. Инструментальные помехи. Шумы и отношение сигнал-шум; оценка минимального аналитического сигнала.

Методы атомной оптической спектроскопии
Атомно-эмиссионный метод . Термодинамика процессов в атомно-эмиссионной спектроскопии (испарение, атомизация, возбуждение, ионизация). Источники атомизации и возбуждения: пламена, плазмотроны, индуктивно-связанная плазма, электрические разряды (искровые, тлеющий разряд, дуговые), лазеры; их основные характеристики. Физические и химические процессы в источниках атомизации и возбуждения.
Качественный и количественный анализ методом атомно-эмиссионной спектроскопии. Уравнение Ломакина-Шайбе и причины отклонения от закона Больцмана. Спектральные, химические и физико-химические помехи, способы их устранения.
Методы атомно-эмиссионной спектроскопии. Эмиссионная фотометрия пламени, атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой, искровая атомно-эмиссионная спектроскопия и их сравнение. Метрологические характеристики и аналитические возможности.
Атомно-абсорбционный метод . Атомизаторы (пламенные и непламенные), основные достоинства. Основной закон светопоглощения в атомно-абсорбционной спектроскопии, его особенности. Источники излучения (газоразрядные лампы, источники сплошного спектра, лазеры), их характеристики, причина основного использования газоразрядных ламп. Спектральные и физико-химические помехи, способы их устранения. Основные узлы атомно-абсорбционного спектрометра. Метрологические характеристики, возможности, преимущества и недостатки метода, его сравнение с атомно-эмиссионным методом.
Атомно-флуоресцентный метод. Принцип метода; особенности и применение.
Примеры практического применения атомно-эмиссионного и атомно-абсорбционного методов в фармацевтическом анализе.

Методы молекулярной оптической спектроскопии
Молекулярная абсорбционная спектроскопия в оптической области (спектрофотометрия). Основной закон светопоглощения в спектрофотометрии (Бугера-Ламберта-Бера). Основные причины отклонения от закона (инструментальные, физико-химические и химические). Понятия об истинном и кажущемся молярном коэффициенте поглощения, удельном коэффициенте поглощения (Е1% 1 см).
Фотометрическая реакция. Фотометрические аналитические реагенты; требования к ним. Примеры фотометрических реакций для определения лекарственных веществ различной природы. Роль пробоподготовки в спектрофотометрии.Экстракционно-фотометрический анализ. Способы определения концентрации веществ:метод стандартных серий, метод уравнивания окрасок, метод разбавления; их применение в фармации.
Измерение высоких, низких оптических плотностей (дифференциальный метод). Анализ многокомпонентных систем. Производная спектрофотометрия. Применение метода для исследования реакций в растворах (комплексообразования, протолитических, процессов агрегации), сопровождающихся изменением спектров поглощения. Основные типы и характеристики приборов. Понятие о спектрофотометрическом титровании. Метрологические характеристики и аналитические возможности. Примеры практического применения метода в фармацевтическом анализе.

Колебательная спектроскопия.
Сравнительная характеристика ИК-спектроскопии и спектроскопии комбинационного рассеяния (КР-спектроскопии). Причины отличия ИК-спектроскопии от спектрофотометрии. Возможности ИК-спектроскопии в качественном, количественном, функциональном и структурном анализе. Основные приборы (спектрофотометры, интерферометры), преимущества ИК-спектроскопии с преобразованием Фурье. Основной закон светопоглощения в ИК-спектроскопии, чувствительность метода. Применение ИК-спектроскопии в фармацевтическом анализе (идентификация лекарственных веществ, доказательство подлинности лекарственных средств, количественный анализ в ИК-области спектра). Ограничения ИК-спектроскопии. Использование КР-спектроскопии в неорганическом и органическом анализе, при неразрушающем анализе биологических и фармацевтических объектов.
Молекулярная люминесцентная спектроскопия. Особенности люминесценции как явления. Классификация видов люминесценции по источникам возбуждения (хемилюминесценция, биолюминесценция, электролюминесценция, фотолюминесценция и др.), механизму и длительности свечения. Флуоресценция и фосфоресценция. Диаграмма Теренина-Льюиса (Яблонского). Законы и правила люминесценции: Стокса-Ломмеля, Каши, Вавилова, Левшина (зеркальной симметрии). Количественный анализ люминесцентным методом, основное уравнение метода, требования к реакциям. Факторы, влияющие на интенсивность люминесценции. Тушение люминесценции. Основные приборы в люминесценции, требования к источникам излучения. Спектральные и физико-химические помехи. Метрологические характеристики и аналитические возможности метода. Сравнение возможностей молекулярной абсорбционной и люминесцентной спектроскопии при определении неорганических соединений. Преимущества люминесцентной спектроскопии при идентификации и определении органических соединений. Экстракционно-флуоресцентный анализ. Титрование с применением флуоресцентных индикаторов. Примеры использования люминесцентной спектроскопии в фармацевтическом анализе.
Спектроскопия светорассеяния. Основные типы светорассеяния и их использование в аналитической химии. Нефелометрия и турбидиметрия, их сравнительная характеристика и сопоставление с люминесцентной спектроскопией и спектрофотометрией. Основные уравнения методов, требования к объектам исследования и реакциям. Основные приборы, чувствительность и селективность методов. Примеры практического применения. Представления о современных методах спектроскопии рассеяния.
Другие методы молекулярной спектроскопии. Рефрактометрия. Поляриметрия. Спектроскопия диффузного отражения в оптической и ИК-областях. Флуоресцентная микроскопия. Оптические сенсоры.

Масс-спектрометрия
Основные принципы методов. Идентификация и определение органических веществ; элементный и изотопный анализ. Основные узлы масс-спектрометра и их назначение. Основные типы ионизации и источники ионов (электронный удар, химическая ионизация, ионизация электрораспылением, индуктивно-связанная плазма, бомбардировка атомами, лазерная десорбция). Характеристика масс-анализаторов, их основные типы (магнитный секторный анализатор, квадрупольный фильтр масс, квадрупольная ионная ловушка, времяпролетный масс-анализатор циклотронно-резонансный анализатор). Основные типы детекторов. Масс-спектр и его интерпретация и обработка. Примеры использования масс-спектрометрии. Хромато-масс-спектрометрия и ее использование в вариантах жидкостной и газовой хроматографии.

Кинетические методы анализа
Сущность методов. Каталитический и некаталитический варианты кинетических методов; их чувствительность и селективность. Типы используемых каталитических и некаталитических реакций: окисления-восстановления, обмена лигандов в комплексах, превращения органических соединений, фотохимические и ферментативные реакции. Способы определения концентрации по данным кинетических измерений.
Примеры практического применения. Определение неорганических и органических соединений. Использование каталитических реакций для определения малых количеств веществ.

Теория и практика пробоотбора и пробоподготовки
Представительность пробы; взаимосвязь с объектом и методом анализа. Факторы, обусловливающие размер и способ отбора представительной пробы. Отбор проб гомогенного и гетерогенного состава. Способы получения средней пробы твердых, жидких и газообразных веществ; устройства и приемы, используемые при этом; первичная обработка и хранение проб; дозирующие устройства.
Основные способы перевода пробы в форму, необходимую для конкретного вида анализа: растворение в различных средах; спекание, сплавление, разложение под действием высоких температур, давления, высокочастотного разряда; комбинирование различных приемов; особенности разложения органических соединений. Способы устранения и учета загрязнений и потерь компонентов при пробоподготовке.
Особенности пробоподготовки твёрдых, жидких и мягких лекарственных форм в фармацевтическом анализе.

Рекомендуемая литература
Основная
1. Харитонов Ю.Я. Аналитическая химия. Аналитика. В двух книгах. 3-е издание. М.: Высш. шк., 2005.
2. Практикум по аналитической химии. / Под ред. Пономарёва В.Д., Ивановой Л.И. М.: Высш. шк., 1983.
3. Харитонов Ю.Я., Григорьева В.Ю. Аналитическая химия. Практикум. Качественный химический анализ. М.: Издательская группа «ГЭОТАР-Медиа», 2007.
4. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1989.

Дополнительная


1. Пономарёв В.Д. Аналитическая химия. М.: Высш. шк., 1982.
2. Основы аналитической химии (под ред. Ю.А. Золотова). В двух книгах. Общие вопросы. Методы разделения. Методы химического анализа. М.: Высш. шк.. 2004. Серия «Классический университетский учебник».
3. Основы аналитической химии. Задачи и упражнения. / Под ред. Ю.А. Золотова. М.: Высш. шк., 2004.
4. Дорохова Е.Н., Прохорова Г.В. Аналитическая химия. Физико-химические методы анализа. М.: Высш. шк., 1991.
5. Дорохова Е.Н., Прохорова Г.В. Задачи и упражнения по аналитической химии. М.: Мир, 2001.
6. Васильев В.П. Аналитическая химия. В двух книгах. М.: Дрофа, Кн. 1. 2004, Кн. 2. 2005.
7. Государственная Фармакопея СССР. XI издание. Вып. 1. Общие основы анализа. М.: Медицина, 1987.
8. Государственная Фармакопея СССР. XI издание. Вып. 2. Общие методы анализа. Лекарственное растительное сырьё. М.: Медицина, 1990.
9. Государственная Фармакопея СССР. Х издание. М.: Медицина, 1968.
10. Джабаров Д.Н. Сборник упражнений и задач по аналитической химии. М.: Русский врач, 1997.
11. Кёлнер Р. Аналитическая химия. Проблемы и подходы. В двух томах. М.: Мир, 2004.
12. Отто М. Современные методы аналитической химии (в двух томах). / Пер. с нем. и под ред. А.В. Гармаша. Т.1. М.: Техносфера, 2003. Т.2. М.: Техносфера, 2004.
13. Аналитическая химия. Проблемы и подходы. В 2-х томах. / Пер. с англ., под ред. Ю.А. Золотова. М.: Мир, 2004.
14. Марченко З., Бальцежак М. Методы спектрофотометрии в УФ и видимой областях в неорганическом анализе. М.: Бином. Лаборатория знаний, 2009.
15. Хенце Г. Полярография и вольтамперометрия. Теоретические основы и аналитическая практика. М.: Бином. Лаборатория знаний, 2008.
16. Кунце У., Шведт Г. Основы качественного и количественного анализа. М.: Мир, 1997.
17. Пилипенко А.Т., Пятницкий И.В. Аналитическая химия. В двух томах. М.: Химия, 1990.
18. Петрухин О.М., Власова Е.Г., Жуков А.Ф. и др. Аналитическая химия. Химические методы анализа. М.: Химия, 1993.
19. Лайтинен Г.А., Харрис В.Е. Химический анализ. М.: Химия, 1979.
20. Петерс Д., Хайес Дж., Хифтье Г. Химическое разделение и измерение. В двух книгах. М.: Химия, 1978.
21. Скуг Д., Уэст Д. Основы аналитической химии. В двух книгах. М.: Мир, 1979.
22. Фритц Дж., Шенк Г. Количественный анализ. М.: Мир, 1978.
23. Юинг Д. Инструментальные методы химического анализа. М.: Мир, 1989.
22. Янсон Э.Ю. Теоретические основы аналитической химии. М.: Высш. шк., 1987.
23. Дерффель К. Статистика в аналитической химии. М.: Мир, 1994.
24. Журнал аналитической химии. Ежемесячное издание издательства «МАИК».

Программа составлена
доц. Мугиновой С.В.
Редактор проф. Шеховцова Т.Н.

Основные типы химических реакций в аналитической химии: кислотно-основные, комплексообразования, окисления-восстановления. Используемые процессы: осаждение-растворение, экстракция, сорбция. Константы равновесия реакций и процессов. Состояние веществ в идеальных и реальных системах. Структура растворителей и раствора. Сольватация, ионизация, диссоциация. Поведение электролитов и неэлектролитов в растворах. Теория Дебая-Хюккеля. Коэффициенты активности. Концентрационные константы. Описание сложных равновесий. Общая и равновесная концентрации. Условные константы.

Скорость реакций в химическом анализе. Элементарные стадии реакции. Кинетические уравнения. Факторы, влияющие на скорость. Катализаторы, ингибиторы. Автокаталитические реакции. Индуцированные и сопряженные реакции. Индукционный фактор. Примеры ускорения и замедления реакций и процессов, используемых в химическом анализе.

Кислотно-основные реакции. Современные представления о кислотах и основаниях. Теория Бренстеда-Лоури. Равновесие в системе кислота - сопряженное основание и растворитель. Константы кислотности и основности. Кислотные и основные свойства растворителей. Константа автопротолиза. Влияние природы растворителя на силу кислоты и основания. Нивелирующий и дифференцирующий эффект растворителя.

Кислотно-основное равновесие в многокомпонентных системах. Буферные растворы и их свойства. Буферная емкость. Вычисления рН растворов незаряженных и заряженных кислот и оснований, многоосновных кислот и оснований, смеси кислот и оснований.

Реакции комплексообразования . Типы комплексных соединений, используемых в аналитической химии. Классификация комплексных соединений по характеру взаимодействия металл-лиганд, по однородности лиганда и центрального иона (комплексообразователя). Свойства комплексных соединений, имеющие аналитическое значение: устойчивость, растворимость, окраска, летучесть.

Ступенчатое комплексообразование. Количественные характеристики комплексных соединений: константы устойчивости (ступенчатые и общие), функция образования (среднее лигандное число), функция закомплексованности, степень образования комплекса. Факторы, влияющие на комплексообразование: строение центрального атома и лиганда, концентрация компонентов, рН, ионная сила раствора, температура. Термодинамическая и кинетическая устойчивость комплексных соединений.

Влияние комплексообразования на растворимость соединений, кислотно-основное равновесие, окислительно-восстановительный потенциал систем, стабилизацию различных степеней окисления элементов. Способы повышения чувствительности и избирательности анализа с использованием комплексных соединений.

Теоретические основы взаимодействия органических реагентов с неорганическими ионами. Влияние их природы, расположения функционально-аналитические групп, стереохимии молекул реагента на его взаимодействие с неорганическими ионами. Теория аналогий взаимодействия ионов металлов с неорганическими реагентами типа H 2 O, NH 3 и H 2 S и кислород-, азот-, серосодержащими органическими реагентами. Основные типы соединений, образуемых с участием органических реагентов. Хелаты, внутрикомплексные соединения. Факторы, определяющие устойчивость хелатов Важнейшие органические реагенты, применяемые в анализе для разделения, обнаружения, определения ионов металлов, для маскирования и демаскирования. Органические реагенты для органического анализа. Возможности использования комплексных соединений и органических реагентов в различных методах анализа.

Окислительно-восстановительные реакции . Электродный потенциал. Уравнение Нернста. Стандартный и формальный потенциалы. Связь константы равновесия со стандартными потенциалами. Направление реакции окисления и восстановления. Факторы, влияющие на направление окислительно-восстановительных реакций. Понятие о смешанных потенциалах. Механизмы окислительно-восстановительных реакций.

Основные неорганические и органические окислители и восстановители, применяемые в анализе. Методы предварительного окисления и восстановления определяемого элемента.

Процессы осаждения и соосаждения. Равновесие в системе раствор - осадок. Осадки и их свойства. Схема образования осадка. Кристаллические и аморфные осадки. Зависимость структуры осадка от его индивидуальных свойств и условий осаждения. Зависимость формы осадка от скорости образования и роста первичных частиц. Факторы, влияющие на растворимость осадков: температура, ионная сила, действие одноименного иона, реакции протонизации, комплексообразования, окисления-восстановления, структура и размер частиц. Условия получения кристаллических осадков. Гомогенное осаждение. Старение осадка. Причины загрязнения осадка. Классификация различных видов соосаждения. Положительное и отрицательное значение явления соосаждения в анализе. Особенности образования коллоидно-дисперсных систем. Использование коллоидных систем в химическом анализе.

2.1. Общие вопросы теории растворов

Раствор как среда для проведения аналитических реакций. Влияние физико-химических характеристик растворителя на химико-аналитические свойства ионов. Основы теории сильных электролитов. Активность, коэффициент активности, ионная сила растворов.

Основные типы химических реакций, используемых в аналитической химии

Кислотно-основное равновесие. Равновесие в водных растворах кислот, оснований и амфолитов. Буферные растворы, их состав и свойства. Расчет рН протолитических систем на основе теории Бренстеда–Лоури. Применение реакций кислотно-основного взаимодействия в аналитической химии. Значение буферных систем в химическом анализе.

Окислительно-восстановительное равновесие. Сопряженная окислительно-восстановительная пара. Окислительно-восстановитель-ный потенциал и факторы, влияющие на его значение. Окислительно-восстановительные реакции, их константа равновесия, направление и скорость. Автокаталитические и индуцированные реакции, их роль в химическом анализе. Применение реакций окисления-восстановления в аналитической химии.

Равновесие комплексообразования. Строение и свойства комплексных соединений. Полидентантные лиганды, хелатные комплексы, хелатный эффект. Равновесия в растворах комплексных соединений, константы устойчивости комплексных ионов. Использование реакций комплексообразования в аналитической химии.

Равновесие в системе осадок–раствор. Гетерогенное химическое равновесие в растворах малорастворимых электролитов. Правило произведения растворимости и его использование в аналитической химии. Константа растворимости (произведение активностей). Факторы, влияющие на растворимость малорастворимых соединений: солевой эффект, влияние одноименных ионов и конкурирующих реакций. Использование гетерогенных систем в аналитических целях.

Органические аналитические реагенты

Особенности органических аналитических реагентов: высокая чувствительность и избирательность действия. Применение органических аналитических реагентов в анализе.

Химические МЕТОДЫ РАЗДЕЛЕНИЯ И ОБНАРУЖЕНИЯ

3.1. Общие вопросы качественного анализа

Цели и задачи качественного анализа. Классификация методов качественного анализа в зависимости от величины пробы. Техника эксперимента: качественные пробирочные, капельные и микрокристаллоскопические реакции.

Аналитический эффект. Аналитические химические реакции и условия их проведения. Общие, групповые и характерные (селективные и специфические) реакции.

Аналитические классификации катионов и анионов. Аналитические группы ионов и Периодический закон Д. И. Менделеева. Систематический и дробный качественный анализ.

Использование реакций осаждения, комплексообразования, кислотно-основных и окислительно-восстановительных реакций в качественном анализе. Органические аналитические реагенты, их преимущества и применение в качественном анализе.

Методы разделения и обнаружения ионов, имеющих наибольшее значение в химической технологии

I аналитическая группа катионов. Общая характеристика. Характерные реакции ионов Na + , K + , NH 4 + и Mg 2+ . Методы разложения и удаления солей аммония. Систематический ход анализа смеси катионов I группы.

II аналитическая группа катионов. Общая характеристика, групповой реагент. Характерные реакции ионов Ca 2+ и Ba 2+ . Оптимальные условия осаждения катионов II группы. Систематический ход анализа смеси катионов II группы и смеси катионов I–II групп.

III аналитическая группа катионов . Общая характеристика, групповой реагент. Характерные реакции ионов Al 3+ , Сr 3+ , Fe 3+ , Fe 2+ , Mn 2+ и Zn 2+ . Оптимальные условия осаждения катионов III группы. Систематический ход анализа смеси катионов III группы и смеси катионов I–III групп.

I аналитическая группа анионов. Общая характеристика, групповой реагент. Характерные реакции ионов CO 3 2– , SO 4 2– , PO 4 3– .

II аналитическая группа анионов. Общая характеристика, групповой реагент. Характерные реакции ионов Cl – , I – .

III аналитическая группа анионов. Общая характеристика. Характерные реакции ионов NO 2 – , NO 3 – . Анализ смеси анионов I–III групп.

Анализ неизвестного вещества

Основные этапы проведения качественного химического анализа: подготовка вещества к анализу, отбор средней пробы, растворение твердых веществ, предварительные испытания, анализ катионов и анионов.

error: