Почему облигатные анаэробы погибают в присутствии кислорода. Отношение прокариот к О2 (облигатные аэробы, микроаэрофилы, факультативные анаэробы, облигатные анаэробы, аэротолерантные анаэробы). Основной принцип идентификации бактерий по Бержди

Отличаются механизмом обменных процессов т.е. без участия свободного кислорода. Конечным акцептором в дыхательной цепи являются нитраты, сульфаты или органические соединения.

Род Clostridium.

Палочки, крупные, спорообразующие - диаметр споры больше диаметра палочки, подвижность +/-, форма веритиноообразная, положение споры имеет дифференциальное значение, капсулы не продуцируют (есть исключение). Растут на средах (безкислородных): Кита-Тороци, Вильсон-Блера, глубокий столбик сахарного агара, кровяной агар в условиях анаэростата.

Биохимически активны, обладают набором сахаролитических, протеолитических ферментов, разлагают вещества до газа (аммиака, СО 2), масляных кислот.

Экология клостридий.

В норме входят в состав нормальной микрофлоры ЖКТ животных (особенно жвачных) и человека - переваривают пищу, усиливают перистальтику и одновременно с этим продуцируют токсины, которые тут же разрушаются протеазами соков.

С фекальными массами выбрасываются в среду и переходят в споровидную форму, и сохраняются там в течении десятков лет. Резервуаром клостридий является почва. Клостридиальная анаэробная инфекция имеет экзогенное происхождение - раневая инфекция. Входными воротами является рана в которой создаются анаэробные благоприятные условия для перехода споровой формы в вегетативную.

СТОЛБНЯК.

Тяжелое, острое инфекционное заболевание, которое имеет одного возбудителя C. tetani и проявляется неврологической симптоматикой.

Характеристика C. tetani

Палочка открыта в 1883 году Монастырским.

Морфологические особенности:

· Подвижность +

· Спора - на периферии

· Форма - ракетки

· Культивируется - на сахаро-кровяном агаге, Кита-Тороции

· Б/Х - нет сахаролитических ферментов, мало протеолитических ферметов.

Условия для заражения столбняком: рана, роды, аборты (вне медицинских учреждениях), операция, нарушения кровотока в ране, занос палочки в раневую поверхность с почвой, пылью, мед. инструментами, перевязочным материалом, перевязочным, шовным материалом.

Патогенные свойства. Патогенез заболевания.

Продукция экзотоксинов - тетаноспазмина, тетанолизина. Это белок который действует дистанционно - по нервным отросткам через аксоны попадает в ЦНС и подавляет тормозные процессы нейромедиаторов в синапсах > нарушает передачу нервных импульсов > мышечный спазм разных групп мышц. В легких случаях наблюдается сокращение мышц вокруг раны.

Столбняк у новорожденных: болеют много детей в странах где женщины рожают без медицинской помощи и перерезание пуповины делается не стерильными предметами.

Клинические формы столбняка: учеловека нисходящий - первыми вовлекаются процессы головы, столбняка, верхних конечностей, затем нижных конечностей. У животных восходящий харакетер.

Лабораторная диагностика.

Бактериологический метод. На исследования берут шовный материал, перевязочный материал, препараты для парентерального введения, образцы почвы. Засевают в анаэробные среды (Кита-Тороции) культивируют в условиях анаэростата 2-3 дня, затем проверяют на стерильность (помутнение, газообразование). Материал от больного берут редко т.к. и так видно что это столбнях, но могут взять кровь, ликвор, содержимое раны. В материале ищут сам возбудитель, а могут искать токсины с помощью биологической пробы на мышах одновремнно водят противостолбнячный анатоксин > мышка выживет, и не вводят анатоксин > мышка умирает.

Профилактика.

Экстренная: проводится в случае травмы, ранений, криминальных абортов. Включает ПХО раны, затем вводится АС-анатоксина (для активной профилактики), введение противостолбнячной сыворотки, противостолбнячного иммуноглобулина (готовые антитоксины - для пассивной иммунизации), проводится избирательно под контролем антитоксического иммунитета - делается с помощью реакции пассивной гемагглютинации у пациента. У взрослых 0,2 мл крови из пальца. Если РПГА + в соотношении 1:20 означает нормальный защитный титр. Если титр снижен, вводят вторые два препарата.

Плановая: обязательная иммунизация всех детей с трех месяцев до 17 лет. У взрослых иммунизируются военнослужащих, работники МЧС, пожарники, шахтеры.

Столбняк управляемая инфекция и заболеть столбняком неприлично. Болеют им только те кто не обращается к врачам.

ГАЗОВАЯ ГАНГРЕНА.

(клостридиальный мионекроз, клостридиальный целлюлит)

ГГ - острое инфекционное заболевание полимикробной природы с тяжелой интоксикацией организма с некрозом ткани и образованием газов в мягких тканях.

Возбудители.

C. pefringes, C. septicum, C. hovyi. Г+ палочки, дифференцируются по положению споры, наличию жгутиков, капсулообразованию, и продукции типоспецифических токсинов. Перекрестного иммунитета нет.

Возбудитель в споровой форме попадает через раны глубокие, тампонированные, сдавлением мягких тканей, осколочные раны, при которых ПХО произведено после 2-х часов после получения.

Факторы патогенности: продукция экзотоксинов (12 штук) - имеют свойство форментов (фосфолипазы, протеазы). Носят названия по буквам греческого алфавита. Главным из них является токсин б - обладает свойством лецитиназы > действует на клеточную мембрану нарушая ее проницаемость. Другие токсины вызывают отек, третье некроз. Действуют местно на ткань. Интоксикация связана с распадом тканей.

Иммунитет.

Носит антитоксический характер (а не на возбудитель). Типоспецифичен, ненапряженный.

Лабораторная диагностика.

Материал: содержимое раны, кусочки пораженных органов и тканей

Метод: бактериоскопия - Г+ палочки, бактериологический: посев среды, биохимические тесты (створаживание молока, колонии черного цвета). Дифференцировка внутри рода по биологической пробе с фильтратом культуры содержащей экзотоксин и антитоксической сывороткой соответствующего возбудителя. Это надо ни сколько для диагноза, сколько для лечения.

Специфическое: срочное введение противогангренозной сыворотки (поли или моновалентной).

Хирургическое: ведение раны открытым способом, помещение в барокамеру, антибиотики

Профилактика.

Плановая: секста-анатоксин (перфрингинс, септикум, нови, тетанис, ботулинум, дефицилле).

БОТУЛИЗМ.

Пищевая инфекция, факторы передачи - консервированный продукты мясного происхождения, рыбного происхождения, консервированные грибы.

Факторы патогенности: продукция ботулотоксина (самый сильный яд) разовая доза 0,001 мг. Действует исключительно на нервную систему, устойчив к действию пищеварительных ферментов, температуре. Есть 7 вариантов токсина (по буквам латинского алфавита), некоторые устойчивы к пищеварительным ферментам и бактериальным протеазам. Есть штаммы токсина которые разрушаются ферментами. У токсина высокие имуногенные свойства. Активируются трипсином желудочного сока, протеазами пищевых продуктов. Действуют в нервных синапсах где фиксируются и их раздражают. Чаще всего поражают глазодвигательный нерв, языкоглоточный нерв, зрительный нерв > куриная слепота, птоз, анизаккария.

Клинические формы: гастроэнтеритическая, нервно-паралитическая, неврологическая.

Лабораторная диагностика: обнаружение токсина в материале от больного (промывные воды желудка, крвоь) и пищевых консервированных продуктов в биологической пробе на мышах с помощью нейстрализации токсина.

Лечение: введение антиботулитической сыворотки

Профилактика: правильное консервирование пищевых продуктов.

Неклостридиальная анаэробная инфекция.

Вызывается представителями следующих родов:

P. melaninogenica

Носит эндогенный характер т.к. все представители входят в сосав нормальной микрофлоры тела человека (обитают в ЖКТ, ротовая полость).

Условия для возникновения инфекций:

· Нарушение целостности слизистых оболочек и такней, при этом микробы из мест естественного обитания переходят в ткани

· Нарушение кровоснабжения тканей > при синдроме сдавливания

· Раковая опухоль, прорастание ее > повреждение оболочек

· Имунодефицитные состояние

· Химиотерапия (цитостатики)

· Лечение гормонами

· Облучение

· Дизбактериоз

Клинические особенности.

1. Носит гнойновоспалительный характер и проявляется в виде абсцессов, инфильтратов

2. располагается вблизи мест естественного обитания возбудителей

3. Гнилостный характер поражение, омертвение тканей. Гнилостный запах экссудата > продукции большого количества летучих жирных кислот

4. Экссудат окрашен в черный, красный цвет

5. Газообразование

6. Тяжелое состояние больного, не видно очага инфекции

7. Инфекция должна лечится особыми антибиотиками (пенициллинами не лечится)

Лабораторная диагностика.

Бактериологический - очень трудный, дорогой, трудоемкий результат через 7-14 дней. Забор материала берут методом аспирации или пункцией соблюдая правило - материал не должен соприкасаться с кислородом воздуха. Питательные среды - сложного состава сывороточные, кровяные среды + факторы роста + витамины + адсорбенты. Культивируют в анаэростатах в присутствии повышенного содержания СО 2 , при температуре 37. Выросшая колония пигментирована (черный, серый), флюорисцируют, морфологическая идентификация не информативна (палочки, полиморфные, спору не образуют), исключение Fusobacterium - веретено. Основной метод - культуральные ососбенности: B. fragilis культивируются в присутвиии 40% желчи, в средах с антибиотиками (канамицин) растут B. Fragilis, а B. urealyticus не растут в среде с ванкомицином. По отношению к углеводам B. Fragilis - сбраживают углеводы с образованием жирных кислот, B. Urealyticus не сбраживают углеводы. Антигенные свойства изучить с помощью диагностических сувороток невозможно - их нет.

Химиотерапевтические препараты относящиеся к груме метранидазола или препараты нитроимидазольного ряда, из антибиотиков клиндомицин. Улучшение микроциркуляции тканей, создание аэробных условий, оксигенация раны.

Профилактика.

Специфической нет.

тема: Коринобактерии, общая характеристика. Возбудитель дифтерии.

Род Corynobacterum, отдельного семейства нет, порядок: Actinomecitales. Внутри рода видов более 20. Виды имеющие наиболее медицинское значение: C. Diphteriae, pseudodiphteriae, haemiliticum, xerosis, pseudotubercullosis, ulcerens и т.д.

Общая характеристика.

Палочковидные, имеют утолщение на одном или обоих концах неподвижные, имеют микрокапсулу, в клеточной стенке имеют специфические липиды (кориномиколовая кислота), кислотонейстойчивые. Широко распространены в окружающей среде. Существуют виды которые обитают на теле человека, входят в состав нормальной микрофлоры (кожа, носоглотка), животных, растений.

Среди коринобакетрий есть патогенные - дифтерия, условнопатогенные - язвенное поражение (ulcerens), конъюнкивиты (xerosis), циститы, сапрофитические.

C. Diphteriae

Возбудитель дифтерии - острого инфекционного заболевания, которое проявляется глубокой интоксикацией организма, свзанной с дифтерийным токсином и фиброзным воспалением в месте нахожденийния возбудителя. Название болезни от греческого diphtera - пленка. Возбудитель открыт Клебсом в дифтерийнфх пленках. Леффлер в 1884 году вывел в чистой культуре (BL - бактерия леффлера). Ру в 1888 году обнаружил экзотоксин и предложил питательную среду для культивирования. Беринг в 1892 году получил антитоксическую сыворотку от больных и предложил для лечения (получил Нобелевскую премию). Рамон в 1923 году разработал метод получения дифтерийного анатоксина.

Продукция токсина

Токсинообразование у возбудителя кодируется специфическим геном, который находится в составе плазмиды умеренного фага, а не в составе геном клетки > не является постоянным. Если культура лизогенная (в составе есть фаг) > токсигенная.

Морфологические особенности.

Палочки, Г+, располагаются под углом друг к другу, имеют зерна волютина по концам > для выяления зерен волютина красят по методу Нейсера (зерна черные, палочки желтые), простой метиленовой синькой (зерна красные, палочки синие).

Культуральные свойства.

Факультативные анаэробы. Среды - на простых не растет. Группы сред:

· Сывороточные: среда Ру, среда Леффлера - рост коринобактерий опережает все другие бактерии.

· Среды с теллуритом (элективная) - ингибирует рот других микробов - кровяно-теллуритовые среда Клауберга, шоколадный агар (агар + гемолизированные эритроциты) gravis дает R коллонии, mitis - дает гладкие среды

· Среди с добавлением цистиина - среда Тинсдаля

Микроорганизмы растут в присутствии пептонов (не целого белка), аминопептонов с обязательными добавками факторов роста (соли железа, цинка, витамины).

Биохимические свойства.

Сахароза -

Мальтоза +

Глюкоза +

Крахмал +

Цистиназа +

Сероводород +

Факторы патогенности.

Продукция дифтерийного гистотоксина - оказывает ядовитое действие на многие типы тканей - специфически блокирует синтез белка в различных клетках особенно тех органов которые интенсивно снабжаются кровью (ССС, миокард, ПНС, ЦНС, почки, надпочечники) является истинным экзотоксин - имуногенный белок, термолябильны, высокотоксичный из гистотоксина можно получить анатоксин с помощью обработки 0,4% формалином при температе 40 в течении 4-х недель, теряет ядовитые действия, но сохраняет имуногенные свойства. Действие токсина обусловлено 2-мя фракциями А и Б. Фракция А - истинный токсин, способна проникать внутрь клетки и инактивировать фактор элонгации 2, который ответственен за удлинение полипептидной цепи на рибосомах, действует только внутри клетки > не может нейтрализоваться дифтерийной сывороткой > эффект действует на ранних стадиях (первые 3 дня). Фракция Б участвует в фиксации токсина на рецепторах клетки и выполняет трансмембранную фнкцию, сама токсином не является. На многослойном эпителии гистотоксин вызывает дифтеритическую (фибринозную) форму воспаления, которая проявляется в виде образования пленки из фибрина. Пленка плотно срастается с подлежащими тканями. На однослойном и циллиндричском эпителии вызывает крупозное воспаление.

Поверхносные структуры бактериальной клетки липидной и белковой природы - помагает прилипать к ткани и поэтому они называются факторами слияния.

Ферменты адгезии и инвазии - нейроамидаза, гиалуронидаза

Токсионообразование - гемотоксин, дермотоксин, некротоксин, нейротоксин.

Патогенез дифтерии.

Анаэробы - организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования. Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения.

Все микроорганизмы по типу дыхания делят на аэробные и анаэробные. Анаэробное дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов при использовании в качестве конечного акцептора протонов не кислорода, а других веществ (например, нитратов) и относится к процессам энергетического обмена (катаболизм, диссимиляция), которые характеризуются окислением углеводов, липидов и аминокислот до низкомолекулярных соединений.

Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам. До 1991 года в микробиологии выделяли класс капнеистических анаэробов, требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа - B. abortus). Умеренно-строгий анаэробный организм выживает в среде с молекулярным O2, однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O2. Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода, то он относится к группе аэротолерантных анаэробов. Например, молочнокислые и многие маслянокислые бактерии. Облигатные анаэробы в присутствии молекулярного кислорода O2 гибнут - например, представители рода бактерий и архей: Bacteroides, Fusobacterium, Butyrivibrio, Methanobacterium). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.

Токсичность кислорода и его форм для анаэробных организмов

Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O2. Фактор, определяющий жизнеспособность организма в среде кислорода - наличие у него функциональной антиоксидантной системы, способной к элиминации: супероксид-аниона (O2−), перекиси водорода (H2O2), синглетного кислорода (O), а также молекулярного кислорода (O2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами: супероксиддисмутаза, элиминирующая супероксид-анион (O2−) без энергетической выгоды для организма; каталаза, элиминирующая перекись водорода (H2O2) без энергетической выгоды для организма; цитохром - фермент, отвечающий за перенос электронов от NAD H к O2. Этот процесс обеспечивает существенную энергетическую выгоду организму. Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы - один или два, облигатные анаэробы не содержат цитохромов. Дополнительная антиоксидантная защита может обеспечиваться синтезом или накоплением низкомолекулярных антиоксидантов: витамина С, А, E, лимонной и других кислот.

Анаэробные микроорганизмы являются нормальной микрофлорой тела человека, в то же время в 30-100% случаев они могут быть причиной гнойно-воспалительных заболеваний.

Заподозрить наличие анаэробных бактерий в исследуемом материала нужно при следующих критериях: Плохой запах исследуемого образца, Локализация инфекции вблизи слизистой оболочкой, Инфекция после укуса человека или животного, Газ в исследуемом материале, Предшествующее лечение лекарственными средствами, малоактивными в отношении анаэробов (антибиотики: аминогликозиды, старые хинолоны, триметоприм), Черное окрашивание содержащих кровь экссудатов, Наличие «серных гранул» в выделениях, Уникальная морфология при окраске по Граму, Отсутствие роста в аэробных условиях микроорганизмов, увиденных в микропрепаратах из экссудата, Рост в анаэробной зоне питательной среды, Анаэробный рост на селективных средах для анаэробов, Характерные колонии на чашках с анаэробным агаром, Флуоресценция колоний в ультрафиолетовом свете.

Микробиологическая диагностика. В настоящее времяосновными методами диагностики являются бактериологический с расширенной идентификацией по биохимическим свойствам, а также газовая хроматография (хемотаксономия) и ПЦР (генодиагностика).

Культивирование анаэробных организмов. Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах - анаэростатах. Другим способом выращивания анаэробов (чаще всего микроорганизмов) на питательных средах - добавление редуцирующих веществ (глюкозу, муравьинокислый натрий, казеин, сульфат натрия, тиосульфат, цистеин, тиоглюконат натрия и др.), связывающих токсичные для анаэробов перикисные соединения.

Общие питательные среды для анаэробных организмов. Для общей среды Вильсона - Блера базой является агар-агар с добавлением глюкозы, сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид - аниона, который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии, появляются в глубине агарового столбика. Среда Китта - Тароцци состоит из мясопептонного бульона, 0,5% глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 - 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода. GasPak - система химическим путем обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода. Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида. Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор.

Классификация анаэробных бактерий базируется на принципах генотипической гомологии, позволяющей определить филогенетическое родство, кроме того все анаэробы можно классифицировать по морфологии и отношению к окраске по Граму.

Грамположительные: палочки (Clostridium, Bifidobacterium, Lactobacillus, Mobiluncus), кокки (Anaerococcus, Peptococcus, Peptostreptococcus, Coprococcus). Грамотрицательные: палочки (Bacteroides, Porphyromonas, Prevotella, Fusobacterium, Leptotrichia), кокки (Acidaminococcus, Veillonella, Megasphaera).

Рассмотрим представителей основных таксономических групп, имеющих важное медицинское значение.

Грамположительные спорообразующие палочки.

Спорообразующие бактерии рода Clostridium

Спорообразующие анаэробы рода Clostridium насчитывают свыше 150 видов. Споры округлой или овальной формы, располагаются в центре клетки субтерминально или терминально в зависимости от видовой принадлежности микроба. Поперечник споры обычно больше поперечника клетки, поэтому клетка, содержащая спору, выглядит раздутой и напоминает веретено (от лат, clostridium - веретено). Эти бактерии при наличии благоприятных условий способны вызывать у человека газовую гангрену, столбняк, ботулизм, псевдомембранозный язвенный энтероколит, пищевые отравления и другие заболевания, связанные с клостридиальным поражением различных органов и систем.

Анаэробы - это микробы, способные расти и размножаться без доступа свободного кислорода. Токсическое действие кислорода на анаэробов связано с подавлением активности ряда бактериальных . Различают факультативные анаэробы, способные изменять анаэробный тип дыхания на аэробный, и строгие (облигатные) анаэробы, имеющие только анаэробный тип дыхания.

При культивировании строгих анаэробов применяют химические способы устранения кислорода: добавляют в среду, окружающую анаэробов, вещества, способные поглощать кислород (например, щелочной раствор пирогаллола, гидросульфит натрия), либо вводят в состав вещества, способные восстанавливать поступающий кислород (например, и др.). Можно обеспечить анаэробов физическими способами: механически удалять из питательных сред перед посевом путем кипячения с последующей заливкой поверхности среды жидким , а также использовать анаэростат; производить посев уколом в высокий столбик питательного агара, заливая его затем вязким вазелиновым маслом. Биологический способ обеспечения бескислородных условий для анаэробов состоит в комбинированном, совместном посеве культур и анаэробов.

К патогенным анаэробам относятся палочки , возбудители (см. Клостридии). См. также .

Анаэробы - микроорганизмы, способные существовать и нормально развиваться без доступа свободного кислорода.

Термины «анаэробы» и «анаэробиоз» (жизнь без доступа воздуха; от греч. отрицательной приставки anaer - воздух и bios-жизнь) предложил Л. Пастер в 1861 г. для характеристики условий существования открытых им микробов маслянокислого брожения. Анаэробы обладают способностью разлагать в бескислородной среде органические соединения и таким образом получать необходимую энергию для своей жизнедеятельности.

Анаэробы широко распространены в природе: они обитают в почве, иле водоемов, компостных кучах, в глубине ран, в кишечнике людей и животных - всюду, где происходит разложение органических веществ без доступа воздуха.

По отношению к кислороду анаэробы делятся на строгие (Облигатные) анаэробы, которые не способны расти в присутствии кислорода, и условные (факультативные) анаэробы, которые могут расти и развиваться как в присутствии кислорода, так и без него. К первой группе относится большинство анаэробов из рода Clostridium, бактерии молочнокислого и маслянокислого брожения; ко второй группе - кокки, грибки и др. Кроме этого, существуют микроорганизмы, требующие для своего развития небольшой концентрации кислорода,- микроаэрофилы (Clostridium histolyticum, Clostridium tertium, некоторые представители рода Fusobacterium и Actinomyces).

Род Clostridium объединяет около 93 видов палочковидных грамположитсльных бактерий, образующих терминальные или субтерминальные споры (цветн. рис. 1-6). К патогенным клостридиям принадлежат Cl. perfringens, Cl. oedema-tiens, Cl. septicum, Cl. histolyticum, Cl. sordellii, являющийся возбудителями анаэробной инфекции (газовой гангрены), гангрены легких, гангренозного аппендицита, послеродовых и послеабортных осложнений, анаэробных септицемий, а также пищевых отравлений (Cl. perfringens, типы А, С, D, F).

Патогенными анаэробами являются также Cl. tetani - возбудитель столбняка и Cl. botulinum - возбудитель ботулизма.

Род Bacteroides включает 30 видов бактерий палочковидной формы, не образующих спор, грамотрицательных, большинство из них является строгими анаэробами. Представители этого рода обнаруживаются в кишечном и мочеполовом трактах человека и животных; некоторые виды патогенны, вызывают септицемию и абсцессы.

Анаэробы рода Fusobacterium (небольшие палочки с утолщением на концах, не образующие спор, грамотрицательные), являющиеся обитателями полости рта человека и животных, в ассоциации с другими бактериями вызывают некробациллез, ангину Венсана, гангренозные стоматиты. Анаэробные стафилококки рода Peptococcus и стрептококки рода Peptostreptococcus обнаруживаются у здоровых людей в дыхательных путях, во рту, влагалище, кишечнике. Кокки-анаэробы вызывают различные гнойные заболевания: абсцесс легких, мастит, миозит, аппендицит, сепсис после родов и абортов, перитонит и т. п. анаэробы из рода Actinomyces вызывают актиномикоз у людей и животных.

Некоторые анаэробы также выполняют полезные функции: способствуют перевариванию и усвоению питательных веществ в кишечнике людей и животных (бактерии маслянокислого и молочнокислого брожения), участвуют в круговороте веществ в природе.

Способы выделения анаэробов основаны на создании анаэробных условий (снижении парциального давления кислорода в среде), для создания которых применяют следующие методы: 1) удаление кислорода из среды путем выкачивания воздуха или вытеснения индифферентным газом; 2) химическое поглощение кислорода при помощи гидросульфита натрия или пирогаллола; 3) комбинированное механическое и химическое удаление кислорода; 4) биологическое поглощение кислорода облигатными аэробными микроорганизмами, посеянными на одной половине чашки Петри (метод Фортнера); 5) частичное удаление воздуха из жидкой питательной среды путем кипячения ее, добавления редуцирующих веществ (глюкоза, тиогликолат, цистеин, кусочки свежего мяса или печени) и заливки среды вазелиновым маслом; 6) механическая защита от кислорода воздуха, осуществляемая путем посева анаэробов в высокий столбик агара в тонких стеклянных трубках по методу Вейона.

Методы идентификации выделенных культур анаэробов - см. Анаэробная инфекция (микробиологическая диагностика).

а) бактероиды

б) клостридии

в) бифидобактерии

162. Ферменты постоянно синтезирующиеся в микробных клетках:

г) конститутивные

163. Ферменты, синтез которых зависит от наличия субстрата:

а) индуцибельные

164. По типу питания клинически значимые виды микроорганизмов:

г) хемогетеротрофы

165. По типу дыхания клинически значимые микроорганизмы в основном:

г) факультативные анаэробы

166. Фазы развития бактериальной популяции (к р о м е):

д) бинарное деление

167. Избирательное поступление веществ в бактериальную клетку, в основном, обеспечивает:

168. Бактерии по типу дыхания (к р о м е):

а) микроаэрофилы

б) облигатные анаэробы

в) облигатные аэробы

г) факультативные анаэробы

169. Способы размножения прокариот (к р о м е):

170. Способ размножения бактерий:

б) бинарное деление

171. Бактерии наиболее биохимически активны в:

б) логарифмической фазе

172. Бактерии наиболее чувствительны к антибиотикам в:

б) логарифмической фазе

173. Механизмы поступления веществ в бактериальную клетку (к р о м е):

д) фагоцитоз

174. Поступление веществ в бактериальную клетку без затраты энергии происходит при:

б) простой диффузии

175. Микроорганизмы, нуждающиеся в меньшей концентрации 0 2 , чем его содержание в воздухе:

г) микроэрофилы

176. Способность анаэробных микроорганизмов существовать в присутствии свободного 0 2

б) аэротолерантность

177. Тип метаболизма облигатных анаэробов:

б) бродильный

178. Тип метаболизма факультативно-анаэробных микроорганизмов:

в) окислительный, бродильный

179. Способы создания анаэробиоза (к р о м е):

д) генотипический

180. Для создания анаэробиоза физическим способом используют:

б) анаэростат

181. Физические методы создания анаэробиоза основаны на:

а) механическом удалении кислорода

182. Для создания анаэробиоза химическим способом используют:

б) метод Биттнера

183. Химические методы создания анаэробиоза основаны на:

б) использовании химических сорбентов

184. Для создания анаэробиоза биологическим способом используют:

д) метод Фортнера

185. Для создания анаэробиоза комбинированным способом используют (к р о м е):

д) метод Биттнера

186. Облигатные анаэробы:

в) клостридии

187. В биологическом методе Фортнера для удаления кислорода используют:

г) сарцину

188. Цель П этапа бак.метода:

в) накопление чистой культуры

189. Цель III этапа бак.метода:

г) идентификация чистой культуры

190. На III этапе бак.метода:

г) определяют видовые свойства и антибиотикограммы

191. Целью микроскопии культуры на III этапе бак.метода является определение:

а) морфологической и тинкториальной однородности

192. Подвижность бактерий определяют:

б) при посеве уколом в столбик полужидкогоагара

193. Принцип определения биохимической активности бактерий:

194. Принцип определения биохимической активности бактерий:

б) определение промежуточных и конечных продуктов метаболизма

195. Для определения биохимических свойств микроорганизмов используют (к р о м е):

г) культуры клеток ткани

196. О сахаролитической активности бактерий свидетельствует:

в) образование кислых и газообразных продуктов метаболизма

197. Сахаролитические свойства бактерий определяют на среде:

198. Протеолитические свойства бактерий определяют на средах с (к р о м е):

в) углеводами

199. Критерий учёта при определении протеолитических свойств бактерий на МПБ:

г) образование сероводорода, индола

200. О чистоте культуры на III этапе бак.метода свидетельствует:

в) однородность роста и однотипность микроорганизмов в мазке

201. Чистая культура –это популяция бактерий одного:

202. Популяция бактерий одного вида:

б) чистая культура

203. Определение антибиотикограмм культур вызвано:

г) приобретением лекарственной устойчивости

204. Определение антибиотикограмм культур вызвано:

б) приобретением лекарственной устойчивости

205. При определении антибиотикограммы методом дисков (кроме):

б) засевают культуру методом «штрих с площадкой»

206. Определение антибиотикограммы проводят (к р о м е):

г) для идентификации микроорганизмов

207. Основной таксон прокариот:

208. Вид – это популяция микроорганизмов сходных по (к р о м е):

д) половому пути размножения

209. Внутри вида микроорганизмы могут отличаться по (к р о м е):

б) способности к спорообразованию

210. Внутри вида микроорганизмы могут отличаться по (к р о м е):

а) окраске по Граму

211. Таксоны прокариот (к р о м е):

212. Вид – это популяция микроорганизмов сходных по (к р о м е):

д) чувствительности к антибиотикам

213. Для идентификация микроорганизмов по Берджи определяют (к р о м е):

б) чувствительность к антибиотикам

214. Основной принцип идентификации бактерий по Бержди:

в) строение клеточной стенки и отношение к окраске по Граму

215. Ферменты микроорганизмов обеспечивают (к р о м е):

д) морфологию

216. Ферменты микроорганизмов определяют по разложению:

в) соответствующего субстрата

217. По назначению питательные среды «пестрого ряда»:

б) дифференциально-диагностические

218. Цель III этапа бак.метода:

в) идентификация чистой культуры

219. На III этапе бак.метода проводят (к р о м е):

д) отбор изолированных колоний

220. Цель II этапа бак.метода выделения возбудителей анаэробных раневых инфекций при исследовании почвы:

б) получение изолированных колоний

221. Выделение чистой культуры анаэробов осуществляется по методу:

б) Цейсслера

222. Выделение чистой культуры анаэробов осуществляется по методу:

б) Вейнберга

223. Возможные спорообразующие возбудители анаэробных инфекций в почве:

в) клостридии газовой гангрены


| | 3 | | | |
error: