История искусственных биосфер: зачем нужна космическая теплица. Экологические системы Что получают экосистемы из космоса откуда они

УДК 94:574.4

https://doi.org/10.24158/fik.2017.6.22

Ткаченко Юрий Леонидович

кандидат технических наук, доцент, доцент Московского государственного технического университета имени Н.Э. Баумана

Морозов Сергей Дмитриевич

старший преподаватель

Московского государственного технического

университета имени Н.Э. Баумана

ИЗ ИСТОРИИ СОЗДАНИЯ ИСКУССТВЕННЫХ ЭКОСИСТЕМ

Tkachenko Yuri Leonidovich

PhD in Technical Science, Assistant Professor, Bauman Moscow State Technical University

Morozov Sergey Dmitrievich

Senior Lecturer, Bauman Moscow State Technical University

GLIMPSES OF HISTORY OF ARTIFICIAL ECOSYSTEMS" CREATION

Аннотация:

В статье рассмотрены документальные факты создания искусственных экосистем, предназначенных для применения в космических и земных условиях. Показаны пионерская роль К.Э. Циолковского, который первым разработал концепцию создания замкнутой среды обитания для людей, находящихся в космосе, и влияние работ В.И. Вернадского, посвященных биосфере, на подходы к построению искусственных экосистем. Представлен решающий вклад С.П. Королева в первое практическое воплощение проектов Циолковского по постройке прототипов космических поселений. Описаны важнейшие исторические этапы этого процесса: эксперименты «Биос» (СССР), «Биосфера-2» (США), «ОЕЕР» (Япония), «Марс-500» (Россия), «Юэгун-1» (Китай).

Ключевые слова:

искусственная экосистема, космические поселения, замкнутая среда обитания, К.Э. Циолковский, С.П. Королев, В.И. Вернадский.

The article describes the documentary facts of artificial ecosystems" creation designed for space and terrestrial applications. The study shows the pioneering role of K.E. Tsiolkovsky who was the first to develop the concept of closed ecological systems for people in space and the influence of V.I. Vernadsky"s biosphere works on the approaches to construct artificial ecosystems. The article presents the crucial contribution of S.P. Korolev to the first practical implementation of building the space habitat prototypes according to K.E. Tsiolkovsky"s projects. The article describes the major historical stages of this process that are such experiments as BIOS (the USSR), Biosphere 2 (the USA), CEEF (Japan), Mars-500 (Russia), Yuegong-1 (China).

artificial ecosystem, space habitats, closed ecological system, K.E. Tsiolkovsky, S.P. Korolev, V.I. Vernadsky.

Введение

Представление о необходимости создания искусственной замкнутой среды обитания человека зародилось одновременно с возникновением мечты о космических полетах. Людей всегда интересовала возможность перемещаться в воздушном и космическом пространстве. В XX в. стартовало практическое освоение космоса, а в XXI в. космонавтика стала уже неотъемлемой частью мировой экономики. Провозвестник космонавтики, философ-космист К.Э. Циолковский в «Монизме Вселенной» (1925) писал: «Техника будущего даст возможность одолеть земную тяжесть и путешествовать по всей Солнечной системе. После заселения нашей Солнечной системы начнут заселяться иные солнечные системы нашего Млечного Пути. С трудом отделится человек от земли» . Под «техникой будущего» Циолковский имел в виду не только ракетную технику, использующую принцип реактивного движения, но и систему обитания человека в космосе, построенную по образу и подобию земной биосферы.

Рождение концепции «космической биосферы»

К.Э. Циолковский первым высказал идею об использовании природоподобных принципов и биосферных механизмов воспроизводства кислорода, питания, пресной воды и утилизации образующихся отходов для жизнеобеспечения экипажа своего «реактивного прибора». Этот вопрос рассматривался Циолковским почти во всех его научных работах, философских и фантастических произведениях. Возможность создания такой среды обоснована трудами В.И. Вернадского, раскрывшего основные принципы построения и функционирования биосферы Земли. В период с 1909 по 1910 г. Вернадский опубликовал серию заметок, посвященных наблюдениям за распространением химических элементов в земной коре, и сделал вывод о ведущем значении живых организмов для создания круговорота вещества на планете. Ознакомившись с этими работами Вернадского и другими трудами в области нового тогда научного направления - экологии, Циолковский писал во второй части статьи «Исследование мировых пространств реактивными приборами» (1911): «Как земная атмосфера очищается растениями при помощи Солнца, так может

возобновляться и наша искусственная атмосфера. Как на Земле растения своими листьями и корнями поглощают нечистоты и дают взамен пищу, так могут непрерывно работать для нас и захваченные нами в путешествия растения. Как все существующее на земле живет одним и тем же количеством газов, жидкостей и твердых тел, так и мы можем вечно жить взятым нами запасом материи» .

Авторству Циолковского принадлежит и проект космического поселения для большого количества жителей, для которых организовано обновление атмосферы, воды и пищевых ресурсов за счет замкнутого круговорота химических веществ. Циолковский описывает такую «космическую биосферу» в рукописи, которую он вел вплоть до 1933 г., но так и не смог закончить:

«Община содержит до тысячи человек народу обоего пола и всех возрастов. Влажность регулируется холодильником. Он же собирает всю излишнюю воду, испаряемую людьми. Общежитие сообщается с оранжереей, из которой получает очищенный кислород и куда посылает все продукты своих выделений. Одни из них в виде жидкостей пронизывают почву оранжерей, другие прямо выпускаются в их атмосферу.

Когда третья доля поверхности цилиндра занята окнами, то получается 87 % наибольшего количества света, а 13 % теряется. Везде неудобны проходы...» (В этом месте рукопись обрывается).

Первые экспериментальные установки

Незаконченная рукопись Циолковского, получившая заглавие «Жизнь в межзвездной среде», вышла в издательстве «Наука» по прошествии более 30 лет - в 1964 г. Инициатором публикации выступил генеральный конструктор космической техники, академик С.П. Королев. В 1962 г. он, уже имея опыт успешного космического полета, осуществленного первым космонавтом Ю.А. Гагариным 12 апреля 1961 г., задал принципиально новый вектор развития космического проекта: «Надо бы начать разработку "оранжереи по Циолковскому", с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над "космическими урожаями". Какие организации будут вести эти работы: по линии растениеводства и вопросов почвы, влаги, по линии механизации и "свето-тепло-солнечной" техники и систем ее регулирования для оранжерей?» .

Создание первой в мире замкнутой искусственной экосистемы космического назначения началось со встречи С.П. Королева и директора Института физики Сибирского отделения Академии наук СССР (ИФ СО АН СССР) Л.В. Киренского, на которой Королев передал Киренскому свои предложения по «космической оранжерее». После этого в ИФ СО АН СССР состоялась серия совещаний, где решался вопрос о том, какой отдел станет базой для развертывания работ по космической программе. Поставленную Королевым задачу создания искусственной экосистемы в герметичной капсуле, в которой человек мог длительное время пребывать в приближенных к земным условиях среды, поручили отделу простейших организмов . Это необычное решение, как выяснилось позже, оказалось верным: именно простейшие микроводоросли оказались способными полностью обеспечить экипаж кислородом и чистой водой.

Знаменательно, что в том же году - 1964-м, когда увидела свет последняя рукопись Циолковского, начались работы по практической отработке первой в истории замкнутой искусственной экологической системы, включающей во внутренний круговорот вещества метаболизм человека. В отделе биофизики ИФ СО АН СССР, позднее преобразованном в самостоятельный Институт биофизики СО АН СССР, в Красноярске началось строительство экспериментальной установки «Биос-1», в которой участвовали И.И. Гительзон и И.А. Терсков, ставшие основателями нового направления в биофизике. Главная задача заключалась в организации обеспечения человека кислородом и водой. Первая установка состояла из двух компонентов: гермокабины объемом 12 м3, внутри которой размещался человек, и специального резервуара-культиватора объемом 20 л для выращивания хлореллы обыкновенной. Проведенные 7 экспериментов различной длительности (от 12 ч до 45 сут) показали возможность полностью замкнуть газообмен, то есть обеспечить выработку кислорода и утилизацию углекислого газа микроводорослями. Через процессы жизнедеятельности хлореллы также был налажен водооборот, в процессе которого вода очищалась в количестве, необходимом для питья и удовлетворения других нужд.

В «Биос-1» не удавались опыты длительностью более 45 суток, так как рост микроводорослей останавливался. В 1966 г. для отработки искусственной экосистемы, содержащей как низшие, так и высшие растения, «Биос-1» был модернизирован до «Биос-2» путем подсоединения к гермокабине фитотрона объемом 8 м3. Фитотрон - это специальное техническое устройство для выращивания в условиях искусственного освещения и микроклимата высших растений: овощей и пшеницы. Высшие растения служили источником пищи для экипажа и обеспечивали регенерацию воздуха. Так как высшие растения тоже давали кислород, то удалось провести опыты с участием двух испытателей, продолжавшиеся 30, 73 и 90 дней. Установка работала вплоть до 1970 г.

«Биос-3» был введен в строй в 1972 г. Это герметичное сооружение размером с 4-комнат-ную квартиру, которое работоспособно и поныне, объемом 315 м3 было устроено в подвале Института биофизики СО РАН в Красноярске. Внутри установка разделена герметичными переборками со шлюзами на четыре отсека: две оранжереи съедобных растений, выращиваемых в фитотронах методом гидропоники, не требующим наличия почвы, отсек для разведения производящей кислород и чистую воду хлореллы и отсек для размещения членов экипажа. В жилом отсеке находятся спальные места, кухня и столовая, туалет, пульт управления, приспособления для обработки растительных продуктов и утилизации отходов.

В фитотронах экипаж выращивал специально выведенные карликовые сорта пшеницы, содержащие минимум несъедобной биомассы. Так же разводили овощи: лук, огурцы, редис, салат, капусту, морковь, картофель, свеклу, щавель и укроп. Было подобрано среднеазиатское масличное растение «чуфа», служившее источником незаменимых для организма человека растительных жиров. Необходимые белки экипаж получал, употребляя в пищу мясные и рыбные консервы.

В «Биос-3» было проведено десять опытных заселений на протяжении 1970-х и в начале 1980-х гг. Три из них продолжались по нескольку месяцев. Самый продолжительный опыт непрерывной полной изоляции экипажа из трех человек продолжался 6 месяцев - с 24 декабря 1972 г. по 22 июня 1973 г. Этот эксперимент имел сложную структуру и проводился в три этапа. Каждому этапу соответствовал свой состав исследователей. Внутри установки попеременно находились М.П. Шиленко, Н.И. Петров и Н.И. Бугреев, отработавшие по 4 месяца каждый. Участник эксперимента В.В. Терских пробыл в «Биос-3» все 6 месяцев.

Фитотроны «Биос-3» производили в сутки достаточный урожай зерна и овощей . Большую часть времени экипаж тратил на выращивание из семян съедобных растений, сбор урожая и его обработку, выпечку хлеба и приготовление пищи. В 1976-1977 гг. прошел эксперимент, продлившийся 4 месяца, в котором были задействованы двое испытателей: Г.З. Асиньяров и Н.И. Бугреев. С осени 1983 г. по весну 1984 г. проводился 5-месячный эксперимент с участием Н.И. Бугреева и С.С. Алексеева, которым завершилась работа «Биоса». Н.И. Бугреев, таким образом, поставил абсолютный в то время рекорд по пребыванию в замкнутой искусственной среде, прожив в установке в совокупности 15 месяцев. В конце 1980-х программа «Биос» была заморожена, так как ее государственное финансирование прекратилось.

«Биосфера» за стеклом

Эстафету в создании замкнутой среды обитания подхватили американцы. В 1984 г. компания Space Biospheres Ventures начала строить «Биосферу-2» - замкнутый экспериментальный комплекс на участке, расположенном в Аризонской пустыне США.

Идеологами «Биосферы-2» были Марк Нельсон и Джон Аллен, которые прониклись идеями В.И. Вернадского, объединив на основе учения о биосфере порядка 20 ученых за рубежом. В СССР в издательстве «Мысль» в 1991 г. была издана книга этого авторского коллектива «Каталог биосферы», в которой рассказывалось о предстоящем эксперименте. Аллен и Нельсон так писали о своих задачах по созданию «космических биосфер»: «Вооруженное великими замыслами, идеями и моделями Вернадского и других ученых, человечество сейчас с готовностью обдумывает не только возможные пути взаимодействия с биосферой, но и пути оказания содействия ее "митозу", приспособляя нашу земную жизнь для полноценного участия в судьбе самого Космоса за счет создания возможности путешествовать и жить в космическом пространстве» .

«Биосфера-2» - это капитальная конструкция из стекла, бетона и стали, расположившаяся на территории 1,27 га. Объем комплекса составил более 200 тыс. м3. Система была герметизирована, то есть могла быть полностью отделена от внешней среды. Внутри нее были искусственно воссозданы водные и наземные экосистемы биосферы: мини-океан с искусственным рифом, сложенным из кораллов, тропический лес - джунгли, саванна, редколесье колючих растений, пустыня, пресноводное и солоноводное болота. Последнее имело форму извилистого русла реки, затопляемого искусственным океаном, - эстуария, засаженного мангровыми зарослями. Биологические сообщества экосистем включали в себя 3800 видов животных, растений и микроорганизмов. Внутри «Биосферы-2» были устроены жилые апартаменты для участников эксперимента и сельскохозяйственные площадки, составлявшие целое ранчо, названное Sun Space.

26 сентября 1991 г. внутри комплекса сооружений были изолированы 8 человек - 4 мужчины и 4 женщины. Экспериментаторы - «бионавты», в числе которых был идеолог проекта Марк Нельсон, занимались традиционным сельским хозяйством - рисоводством. Для этого использовались сельская и животноводческая фермы, применялись высоконадежные инструменты, которые должны были приводиться в действие только за счет мускульной силы человека. Внутри установки были высажены трава, кустарники и деревья. Исследователи разводили рис и пшеницу, бататы и свеклу, бананы и папайю, а также другие культуры, что в совокупности позволяло получать 46 видов разнообразной пищи растительного происхождения. Мясной рацион обеспечивало животноводство. На животноводческой ферме жили куры, козы и свиньи. Вдобавок бионавты растили рыбу и креветок.

Трудности начались практически сразу же после начала эксперимента. Через неделю техник «Биосферы-2» сообщил, что в атмосфере понемногу уменьшается количество кислорода и нарастает концентрация углекислого газа. Также выяснилось, что ферма обеспечивала только 83 % требуемого рациона исследователей. К тому же в 1992 г. размножившиеся мотыльки-вредители уничтожили почти все посевы риса. Всю зиму этого года держалась облачная погода, что привело к снижению продукции кислорода и растительного питания. Искусственный океан закис-лился вследствие растворения в его воде большого объема углекислого газа, из-за чего коралловый риф погиб. Началось вымирание животных в джунглях и саванне. В течение двух лет концентрация кислорода за стеклом снизилась до 14 % вместо исходных 21 % по объему.

«Бионавты» вышли наружу в сентябре 1993 г., после двухлетнего пребывания «за стеклом». Считается, что «Биосфера-2» потерпела неудачу. Вследствие малых масштабов модели, «экологическая катастрофа» в ней произошла очень быстро и показала всю пагубность современного способа хозяйствования человека, создающего экологические проблемы: недостаток питания, изъятие биомассы, загрязнение атмосферы и гидросферы, уменьшение видового разнообразия. Опыт «Биосферы-2» имел большое мировоззренческое значение. Одна из «бионав-тов» - Джейн Пойнтер, выступая с лекциями после окончания эксперимента в «Биосфере-2», говорила: «Только тут я впервые осознала, насколько человек зависим от биосферы - если погибнут все растения, то людям нечем будет дышать и нечего будет есть. Если загрязнится вся вода, то людям нечего будет пить». Комплекс «Биосферы-2» и сейчас открыт для посещения, так как его авторы считают, что создали принципиально новую базу для публичного образования в области защиты окружающей среды .

Прообразы обитаемых космических станций

Создаваемые со второй половины 1990-х установки изначально имели четкое назначение -моделирование системы жизнеобеспечения космического корабля или обитаемой базы для условий полета и исследования Марса или Луны. С 1998 по 2001 г. в Японии проводились исследования на установке CEEF (Closed Ecological Experimental Facility), представляющей собой замкнутую искусственную экосистему. Целью экспериментов было изучение замкнутых циклов газообмена, водо-оборота и питания при имитации условий марсианской обитаемой базы. Комплекс включал в себя фитотронный блок для выращивания растений, отсек для разведения домашних животных (козы), специальный геогидросферный блок, моделирующий наземную и водную экосистемы, и обитаемый модуль для экипажа из двух человек. Площадь растительных посадок составляла 150 м2, животноводческого модуля - 30 м2, жилого - 50 м2 . Авторами проекта были сотрудники Токийского аэрокосмического института К. Нитта и М. Огучи. Объект располагается на острове Хонсю в городе Роккасё. Данные о проведении длительных экспериментов по изоляции людей в этой установке отсутствуют, опубликованы результаты моделирования последствий глобального потепления климата и исследований миграции радионуклидов во внутренних потоках вещества.

Моделирование замкнутой среды обитания при имитации длительных космических полетов проводится в Институте медико-биологических проблем (ИМБП) РАН (Москва), основанном М.В. Келдышем и С.П. Королевым в 1963 г. Основу этой работы составляет исследование пребывания людей в изолированных условиях в течение длительного времени внутри комплекса «Марс-500». Эксперимент по 520-суточной изоляции экипажа начался в июне 2010-го и завершился в ноябре 2011 г. В эксперименте приняли участие исследователи-мужчины: А.С. Ситев, С.Р. Камолов, А.Е. Смолеевский (Россия), Диего Урбина (Италия), Шарль Ромен (Франция), Ван Юэ (Китай) . В состав одного из модулей комплекса включена оранжерея для разведения овощей. Площадь посадок не превышает 14,7 м2 в объеме 69 м3. Оранжерея служила источником витаминов, дополняющим и улучшающим рацион питания участников эксперимента. Комплекс «Марс-500» базируется на физико-химических, а не биологических процессах обеспечения экипажа кислородом и чистой водой при использовании запасов консервированного питания, поэтому существенным образом отличается от установки «Биос-3».

Наиболее концептуально близок проекту «Биос» китайский комплекс «Юэгун-1» («Лунный дворец»). Комплекс воспроизводит условия лунной базы. «Юэгун-1» разработан в Пекинском университете аэронавтики и астронавтики профессором Ли Хун . Консультировали создателей китайского комплекса ученые из Москвы и Красноярска.

Комплекс «Юэгун-1» занимает площадь 160 м2 при объеме 500 м3 и состоит из трех полуцилиндрических модулей. Первый модуль - жилой, в котором находятся кают-компания, каюты для трех членов экипажа, система переработки отходов и помещение для личной гигиены. В двух остальных модулях размещаются оранжереи для производства растительной пищи. Выращенные растения составляли более 40 % рациона экипажа. По воде и по воздуху замкнутость среды установки составила 99 %.

Строительство установки «Юэгун-1» было закончено 9 ноября 2013 г. С 23 по 30 декабря 2014 г. испытатели, которыми были два студента университета, провели пробное заселение «Лунного дворца». Сам эксперимент проводился в течение 105 суток - с 3 февраля по 20 мая 2014 г. В нем участвовал экипаж из трех человек: мужчина Се Бэйчжэнь и две женщины - Ван Миньцзюань и Дун Чэни. Эксперимент завершился успешно и широко освещался в средствах массовой информации Китая. Заключение

Представленная история создания замкнутых искусственных экосистем является фрагментом глобального исторического процесса развития человечества. Человек благодаря своим способностям к мышлению создал практическую космонавтику и доказал свою способность выйти за рамки планеты. Глубокое изучение биосферных механизмов построения и функционирования среды обитания позволит людям создавать благоприятные условия на планетах и их спутниках, астероидах, других космических телах. Эта деятельность позволит реализовать смыслы существования человечества.

В.И. Вернадский писал о растекании жизни по Земле и космическому пространству. Вести экспансию нашей биосферы дальше, вплоть до освоения изученных рубежей Космоса, способен лишь человек с его разумом. Человечеству необходимо распространить биосферу на астероиды и ближайшие космические тела, чтобы пойти дальше, за изученные пределы Вселенной. Это важно для сохранения не только нашей биосферы, но и самого биологического вида человека. В результате предвиденного Циолковским освоения сначала околоземного пространства, Солнечной системы, а затем и дальнего Космоса могут образоваться динамические популяции человечества - т. е. часть людей будет постоянно жить на космических базах вне Земли. История как наука, таким образом, выйдет за планетарные рамки и станет воистину историей не только Земли, но и Космоса.

1. Мир философии. В 2 т. Т. 2. М., 1991. 624 с.

2. Циолковский К.Э. Промышленное освоение космоса: сборник трудов. М., 1989. 278 с.

3. Фотокопии рукописей К.Э. Циолковского [Электронный ресурс]. URL: http://tsiolkovsky.org/wp-content/up-loads/2016/02/ZHizn-v-mezhzvezdnoj-srede.pdf (дата обращения: 25.04.2017).

4. Гришин Ю.И. Искусственные космические экосистемы. М., 1989. 64 с. (Новое в жизни, науке, технике. Серия «Космонавтика, астрономия». № 7).

5. Гительзон И.И., Дегерменджи А.Г., Тихомиров А.А. Замкнутые системы жизнеобеспечения // Наука в России. 2011. № 6. С. 4-10.

6. Дегерменджи А.Г., Тихомиров А.А. Создание искусственных замкнутых экосистем земного и космического назначения // Вестник РАН. 2014. Т. 84, № 3. С. 233-240.

7. Каталог биосферы. М., 1991. 253 с.

8. Nelson M., Dempster W.F., Allen J.P. "Modular Biospheres" - New Testbed Platforms for Public Environmental Education and Research // Advances in Space Research. 2008. Vol. 41, no. 5. Р. 787-797.

9. Nitta K. The CEEF, Closed Ecosystem as a Laboratory for Determining the Dynamics of Radioactive Isotopes // Ibid. 2001. Vol. 27, no. 9. Р. 1505-1512.

10. Григорьев А.И., Моруков Б.В. «Марс-500»: предварительные итоги // Земля и Вселенная. 2013. № 3. С. 31-41.

11. Павельцев П. «Юэгун-1» - наследник проекта БИОС-3 // Новости космонавтики. 2014. Т. 24, № 7. С. 63-65.

Колонизации красной планеты в 2023 году. Экспедиция будет безвозвратной, поэтому для ее успеха особенно важна разработка функционирующей замкнутой экосистемы. И если технологии путешествия до Марса примерно понятны, то создание искусственных устойчивых биосфер пока вызывает вопросы. Проект «Новый век» вспоминает историю ключевых экспериментов в области замкнутых биосистем и разбирается, почему внеземной цивилизации необходимы деревья.

Серьезные эксперименты по организации автономных экосистем начались в 70-х годах XX века. После высадки экипажа Аполлон-11 на Луну стало понятно, что перспективы космической колонизации реальны, а опыт создания живых замкнутых пространств стал необходим для потенциальных длительных перелетов и построения инопланетных баз. Первым за проблему взялся СССР. В 1972 году в подвале красноярского Института биофизики на основе профессор Борис Ковров построил первую функционирующую замкнутую экосистему БИОС-3 . Комплекс состоял из герметичного помещения размером 14×9 х 2,5 м и был разделен на четыре отсека: жилую каюту для экипажа, две теплицы для выращивания съедобных растений и генератор кислорода, где находился бак с микроводорослевыми культурами. Водоросли и теплицы, где росли карликовая пшеница, соя, чуфа, морковь, редис, свекла, картофель, огурцы, щавель, капуста, укроп и лук освещались УФ-лампами.

В БИОС-3 были проведены 10 экспериментов с экипажами от 1 до 3 человек, а самая продолжительная экспедиция проходила 180 дней. Комплекс оказался на 100% автономен по кислороду и воде и на 80% по пище. Помимо продуктов собственного огородничества потенциальным космонавтам была положена стратегическая тушенка. Большим недостатком красноярской биосферы оказалось отсутствие энергетической автономности - она использовала 400 кВт внешней электроэнергии ежедневно. Эту задачу планировалось решить, но во время перестройки финансирование эксперимента прекратилось и БИОС-3 оставили ржаветь в подвале института.

Самый масштабный эксперимент по организации замкнутой экосистемы был проведен в 90-х годах в США. Он финансировался на средства Эда Басса, нью-эйдж миллионера, мечтавшего о создании счастливой коммуны визионеров-биологов. Биосфера-2 располагалась в аризонской пустыне и представляла собой систему воздухонепроницаемых стеклянных куполов. Внутри были установлены пять ландшафтных модулей: джунгли, саванна, болото, маленький океан с пляжем и пустыня. Географическое разнообразие дополнял сельскохозяйственный блок, оснащенный по последнему слову техники, а также жилой дом, построенный в авангардном стиле. Восемь бионавтов и около 4 тысяч разнообразных представителей фаун, включая коз, свиней и кур, должны были прожить под куполом 2 года на полном самообеспечении, за исключением потребления электроэнергии, которая использовалась в основном для охлаждения гигантского парника. Строительство комплекса обошлось в 150 миллионов долларов. По уверению проектировщиков, Биосфера могла просуществовать в автономном режиме не менее 100 лет.

26 сентября 1991 года при огромном скоплении журналистов четверо мужчин и четыре женщины зашли внутрь купола и эксперимент начался. Примерно через неделю выяснилось, что проектировщики «Биосферы» допустили роковой просчет - количество кислорода в атмосфере экосистемы постепенно, но неумолимо сокращалось. Участники эксперимента почему-то решили скрыть этот факт. Вскоре перед бионавтами встала еще одна проблема: выяснилось, что их сельскохозяйственные угодья способны обеспечить около 80% их потребности в пище. Этот просчет был намеренным. Cами того не подозревая, они оказались участниками еще одного эксперимента, который проводил в куполе «бортовой» доктор Валфорд, сторонник теории лечебного голодания.

Летом 1992-го разразился кризис. Из-за рекордно сильного эль-ниньо небо над Биосферой-2 почти всю зиму было затянуто облаками. Это привело к тому, что фотосинтез джунглей ослаб, выработка драгоценного кислорода уменьшилась, так же как и без того скудный органический урожай. Неожиданно огромные пятиметровые деревья в джунглях стали хрупкими. Некоторые упали, сломав все вокруг. Впоследствии, исследуя этот феномен, ученые пришли к выводу, что его причина крылась в отсутствии ветра под куполом, который укрепляет стволы деревьев в природе. Эд Басс, финансировавший эксперимент, продолжал скрывать катастрофическое состояние Биосферы-2.

К осени содержание кислорода в атмосфере купола снизилось до 14%, что сравнимо с разреженностью воздуха на 5000 метров над уровнем моря. По ночам его жители постоянно просыпались, так как активный фотосинтез растений прекращался, уровень кислорода резко падал и они начинали задыхаться. К этому моменту все позвоночные животные «Биосферы» погибли. Истощенные скудным рационом и кислородным голоданием бионавты разделились на два лагеря - половина хотела, чтобы их немедленно выпустили наружу, а другие настаивали, что нужно высидеть 2 года, чего бы это ни стоило. В итоге Басс принял решение разгерметизировать капсулу и закачать туда кислород. Также он разрешил бионавтам использовать неприкосновенные запасы зерна и овощей из семенного хранилища. Таким образом, эксперимент удалось довести до конца, но после выхода колонистов Биосферу-2 признали провалом.

В это же время в NASA разработало менее экстравагантный, но более успешный проект. Космическое агентство придумало экосистему, которая, в отличие от всех предыдущих, принесла своим создателям вполне внушительный коммерческий доход. Это была Ecosphere - герметичный стеклянный шар-аквариум, диаметром 10-20 сантиметров, где находилось несколько креветок Halocaridina rubra, кусочек коралла, немного зеленых водорослей, бактерии, расщепляющие продукты жизнедеятельности креветок, песок, морская вода и прослойка воздуха. По уверениям производителей весь этот мир был абсолютно автономным: он нуждался только в солнечном свете и поддержании регулярной температуры - и тогда мог просуществовать «вечность». Креветки размножались и умирали, не выходя, однако, за рамки разумного числа, которое могли обеспечить существующие ресурсы. Ecosphere сразу приобрела невероятную популярность. Однако вскоре выяснилось, что вечность представляет собой 2-3 года, после чего биологический баланс внутри аквариума неотвратимо нарушался и его обитатели погибали. Тем не менее герметические аквариумы до сих пор пользуются популярностью - в конце концов, каждая цивилизация имеет свой срок годности и 2-3 года по креветочным меркам не так уж и плохо.

Успешными примерами создания замкнутых систем также можно считать МКС , медико-технический комплекс «Марс-500» РАН и несколько других подобных проектов. Однако их сложно назвать «биосферой». Вся пища космонавтов доставляется с Земли, а в главных системах жизнеобеспечения никак не участвуют растения. Регенерация кислорода на МКС происходит с использованием постоянно пополняемых с Земли запасов воды. «Марс-500» также забирает воду и частично воздух извне. Впрочем для регенерации кислорода и восстановления запасов воды можно использовать реакцию Сабатье. Потребуется только небольшое количество водорода извне, а этот газ является наиболее распространенным не только на Земле, но и в космосе. Так что, например, деревья на гипотетических инопланетных станциях совсем не нужны.

Но если бы для успешного функционирования нам хватало ежедневного поступления четкой суммы питательных веществ и кислорода все было бы слишком просто. Внутри ставшей музеем Биофсферы-2 до сих пор сохранилась надпись на стене одного из участников эксперимента: «Только здесь мы почувствовали, насколько зависим от окружающей природы. Если не будет деревьев - нам нечем будет дышать, если вода загрязнится - нам нечего будет пить». Эта обретенная мудрость ставит перед Mars One несколько важных задач, которые предстоит решить для комфортной жизни колонистов в 2023 году. Из нашей генетической памяти не так легко стереть миллион лет проживания внутри биосферы, недаром третьим пунктом человеческих жизненных планов после биологического размножения и дома значится «посадить дерево».

Человечеству потребовались все знания, собранные учёными за сотни лет, чтобы начать космические полёты. И тогда человек столкнулся с новой проблемой - для колонизации других планет и дальних перелётов нужно разработать замкнутую экосистему, в том числе - обеспечить космонавтов едой, водой и кислородом. Доставлять еду на Марс, который находится за 200 миллионов километров от Земли, дорого и сложно, логичнее будет найти такие способы производства продуктов, которые легко реализовать в полёте и на Красной планете.

Как на семена влияет микрогравитация? Какие овощи будут безвредны, если их вырастить в богатой тяжёлыми металлами почве Марса? Как обустроить плантацию на борту космического корабля? Учёные и космонавты уже более пятидесяти лет ищут ответы на эти вопросы.

На иллюстрации - российский космонавт Максим Сураев обнимает растения в установке «Лада» на борту Международной космической станции, 2014 год.

Константин Циолковский в «Целях звездоплавания» писал: «Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса - слой влажной почвы с насаженными в ней растениями». Так он предлагал искусственно создавать гравитацию для растений. Растения должны быть подобраны плодовитые, мелкие, без толстых стволов и не работающих на солнце частей. Так колонизаторов можно частично обеспечить биологически активными веществами и микроэлементами и регенерировать кислород и воду.

В 1962 году главный конструктор ОКБ-1 Сергей Королёв ставил задачу: «Надо бы начать разработку «Оранжереи (ОР) по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями».


Рукопись К.Э. Циолковского «Альбом космических путешествий», 1933 год.

СССР вывел на орбиту первый искусственный спутник Земли 4 октября 1957 года, спустя двадцать два года после смерти Циолковского. Уже в ноябре того же года в космос отправили дворняжку Лайку, первую из собак, которые должны были открыть путь в космос людям. Лайка погибла от перегрева всего за пять часов, хотя полёт рассчитали на неделю - на это время хватило бы кислорода и еды.

Учёные предположили, что проблема возникла из-за генетически заложенной ориентации - проросток должен тянуться к свету, а корень - в противоположную сторону. Они усовершенствовали «Оазис», и следующая экспедиция взяла на орбиту новые семена.

Лук вырос. Виталий Севастьянов сообщил на Землю, что стрелки достигли десяти-пятнадцати сантиметров. «Какие стрелки, какого лука? Понимаем, это шутка, мы же вам давали горох, а не луковицы», - говорили с Земли. Бортинженер ответил, что из дома космонавты прихватили две луковицы, чтобы посадить их сверх плана, и успокоил учёных - горошины почти все взошли.

Но растения отказывались цвести. На этой стадии они погибали. Такая же судьба ждала тюльпаны, которые в установке «Лютик» на Северном полюсе распустились, а в космосе - нет.

Зато лук можно было есть, что успешно делали в 1978 году космонавты В. Коваленок и А. Иванченков: «Вот хорошо поработали. Может быть, теперь нам в награду и луковицу разрешат съесть».


Техника - молодёжи, 1983-04, страница 6 . Горох в установке «Оазис»

Космонавты В. Рюмин и Л. Попов в апреле 1980 года получили установку «Малахит» с цветущими орхидеями. Орхидеи крепятся в коре деревьев и в дуплах, и учёные посчитали, что они могут быть менее подвержены геотропизму - способности органов растений располагаться и расти в определённом направлении относительно центра земного шара. Цветки через несколько дней опали, но при этом у орхидей образовались новые листья и воздушные корни. Ещё чуть позже советско-вьетнамский экипаж из В. Горбатко и Фам Туай привёзли с собой подрощенный арабидопсис.

Растения не хотели цвести. Семена всходили, но, например, орхидея не зацвела в космосе. Учёным нужно было помочь растениям справиться с невесомостью. Это делали в том числе с помощью электростимуляции корневой зоны: учёные считали, что электромагнитное поле Земли может влиять на рост. Ещё один способ предполагал описанный Циолковским план по созданию искусственной гравитации - растения выращивались в центрифуге. Центрифуга помогла - ростки ориентировались вдоль вектора центробежной силы. Наконец космонавты добились своего. В «Светоблоке» зацвёл Арабидопсис.

Слева на изображении ниже - оранжерея «Фитон» на борту «Салют-7». Впервые в этой орбитальной оранжерее Резуховидка Таля (Арабидопсис) прошла полный цикл развития и дала семена. Посредине - «Светоблок», в которой на борту «Салют-6» Арабидопсис впервые зацвёл. Справа - бортовая оранжерея «Оазис-1А» на станции «Салют-7»: она была оснащена системой дозированного полуавтоматического полива, аэрации и электростимулирования корней и могла перемещать вегетационные сосуды с растениями относительно источника света.


«Фитон», «Светоблок» и «Оазис-1А»


Установка «Трапеция» для исследования роста и развития растений.


Наборы с семенами


Бортовой журнал станции «Салют-7», зарисовки Светланы Савицкой

На станции «Мир» была установлена первая в мире автоматическая оранжерея «Свет». Российские космонавты в 1990-2000-х годах провели в этой оранжерее шесть экспериментов. Они растили салаты, редис и пшеницу. В 1996-1997 годах Институт медико-биологических проблем РАН планировал вырастить семена растений, полученные в космосе - то есть поработать с двумя поколениями растений. Для эксперимента выбрали гибрид дикой капусты высотой около двадцати сантиметров. У растения был один минус - космонавтам нужно было заниматься опылением.

Результат был интересный - семена второго поколения в космосе получили, и они даже взошли. Но растения выросли до шести сантиметров вместо двадцати пяти. Маргарита Левинских, научный сотрудник Института медико-биологических проблем РАН, рассказывает , что ювелирную работу по опылению растений выполнял американский астронавт Майкл Фоссум.


Видео Роскосмоса о выращивании растений в космосе. На 4:38 - растения на станции «Мир»

В апреле 2014 года грузовой корабль Dragon SpaceX доставил на Международную космическую станцию установку для выращивания зелени Veggie, а в марте астронавты начали тестировать орбитальную плантацию. Установка контролирует свет и поступление питательных веществ. В августе 2015 в меню астронавтов , выращенную в условиях микрогравитации.


Выращенный на Международной космической станции салат


Так плантация на космической станции может выглядеть в будущем

В российском сегменте Международной космической станции действует оранжерея «Лада» для эксперимента «Растения-2» . В конце 2016 или начале 2017 года на борту появится версия «Лада-2». Над этими проектами работает Институт медико-биологических проблем РАН.

Космическая растениеводство не ограничивается экспериментами в невесомости. Человеку для колонизации других планет придётся развивать сельское хозяйство на грунте, который отличается от земного, и в атмосфере, имеющей иной состав. В 2014 году биолог Майкл Маутнер спаржу с картофелем на метеоритном грунте. Чтоб получить пригодную для выращивания почву, метеорит был размолот в порошок. Опытным путём он сумел доказать, что на грунте внеземного происхождения могут произрасти бактерии, микроскопические грибы и растения. Материал большинства астероидов содержит фосфаты, нитраты и иногда воду.


Спаржа, выросшая на метеоритном грунте

В случае с Марсом, где много песка и пыли, измельчение породы не понадобится. Но возникнет другая проблема - состав почвы. В грунте Марса есть тяжёлые металлы, повышенное количество которых в растениях опасно для человека. Учёные из Голландии имитировали марсианскую почву и с 2013 года вырастили на ней десять урожаев нескольких видов растений.

В результате эксперимента учёные выяснили, что содержание тяжёлых металлов в выращенных на имитированном марсианском грунте горохе, редисе, ржи и помидорах не опасно для человека. Картофель и другие культуры учёные продолжают исследовать.


Исследователь Вагер Вамелинк инспектирует растения, выращиваемые на имитированной марсианской почве. Фото: Joep Frissel/AFP/Getty Images


Содержание металлов в урожае, собранном на Земле и на симуляциях почвы Луны и Марса

Одной из важных задач является создание замкнутого цикла жизнеобеспечения. Растения получают углекислый газ и отходы жизнедеятельности экипажа, взамен отдают кислород и производят еду. Учёные возможность использования в пищу одноклеточной водоросли хлореллы, содержащей 45% белка и по 20% жиров и углеводов. Но эта в теории питательная еда не усваивается человеком из-за плотной клеточной стенки. Существуют способы решения данной проблемы. Можно расщеплять клеточные стенки технологическими методами, используя термообработку, мелки помол или другие способы. Можно брать с собой разработанные специально для хлореллы ферменты, которые космонавты будут принимать с едой. Учёные могут и вывести ГМО-хлореллу, стенку которой человеческие ферменты смогут расщепить. Хлореллой для питания в космосе сейчас не занимаются, но используют в замкнутых экосистемах для производства кислорода.

Эксперимент с хлореллой проводили на борту орбитальной станции «Салют-6». В 1970-е годы ещё считали, что пребывание в микрогравитации не оказывает отрицательного влияния на человеческий организм - слишком было мало информации. Изучить влияние на живые организмы пытались и с помощью хлореллы, жизненный цикл которой длится всего четыре часа. Её удобно было сравнивать с хлореллой, выращенной на Земле.



Прибор ИФС-2 предназначался для выращивания грибов, культур тканей и микроорганизмов, водных животных.

С 70-х годов в СССР проводили эксперименты по замкнутым системам. В 1972 году началась работа «БИОС-3» - эта система действует и сейчас . Комплекс оснащён камерами для выращивания растений в регулируемых искусственных условиях - фитотронами. В них выращивали пшеницу, сою, салат чуфу, морковь, редис, свёклу, картофель, огурцы, щавель, капусту, укроп и лук. Учёные смогли достичь почти на 100% замкнутый цикл по воде и воздуху и до 50-80% - по питанию. Главные цели Международного центра замкнутых экологических систем - изучить принципы функционирования таких систем различной степени сложности и разработать научные основы их создания.

Одним из громких экспериментов, симулирующих перелёт к Марсу и возвращение на Землю, был . В течение 519 дней шесть добровольцев находились в замкнутом комплексе. Эксперимент организовали Рокосмос и Российская академия наук, а партнёром стало Европейское космическое агентство. На “борту корабля” были две оранжереи - в одной рос салат, в другой - горох. В данном случае целью было не вырастить растения в приближенных к космическим условиям, а выяснить, насколько растения важны для экипажа. Поэтому дверцы оранжереи заклеили непрозрачной плёнкой и установили датчик, фиксирующий каждое открывание. На фото слева член экипажа «Марс-500» Марина Тугушева работает с оранжереями в рамках эксперимента.

Ещё один эксперимент на «борту» «Марс-500» - GreenHouse. В видео ниже член экспедиции Алексей Ситнев рассказывает об эксперименте и показывает оранжерею с различными растениями.

У человека будет много шансов . Он рискует разбиться при посадке, замёрзнуть на поверхности или же просто не долететь. И, конечно, умереть от голода. Растениеводство необходимо для образования колонии, и учёные и космонавты работают в этом направлении, показывая удачные примеры выращивания некоторых видов не только в условиях микрогравитации, но и в имитированном грунте Марса и Луны. У космических колонистов определенно будет возможность .

error: