Функции числового аргумента. Тригонометрические функции числового аргумента. График и свойства функции у = sin x. Организационный момент, сообщение темы и цели урока

Основным тригонометрическим тождеством в русскоязычных учебниках математики называют соотношение sin 2 ⁡ α + cos 2 ⁡ α = 1

Мы рассмотрели самые основные тригонометрические функции (не обольщайтесь помимо синуса, косинуса, тангенса и котангенса существует еще целое множество других функций, но о них позже), а пока рассмотрим некоторые основные свойства уже изученных функций.

Тригонометрические функции числового аргумента

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin(t) . Правда, правило соответствия довольно сложное и заключается в следующем.

Чтобы по числу t найти значение sin(t) , нужно:

  1. расположить числовую окружность на координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);
  2. на окружности найти точку, соответствующую числу t ;
  3. найти ординату этой точки.
  4. эта ордината и есть искомое sin(t) .

Фактически речь идет о функции s = sin(t) , где t - любое действительное число. Мы умеем вычислять некоторые значения этой функции (например, sin(0) = 0 , \(sin \frac {\pi}{6} = \frac{1}{2} \) и т.д.), знаем некоторые ее свойства.

Точно так же мы можем считать, что уже получили некоторые представления еще о трех функциях: s = cos(t) s = tg(t) s = ctg(t) Все эти функции называют тригонометрическими функциями числового аргумента t .

Связь тригонометрических функций

Как вы, надеюсь, догадываетесь все тригонометрические функции связаны между собой и даже не зная значение одной, ее можно найти через другое.

К примеру, самая главная формула, из всей тригонометрии - это основное тригонометрическое тождество :

\[ sin^{2} t + cos^{2} t = 1 \]

Как видите, зная значение синуса можно найти значение косинуса, и также наоборот. Также очень распространенные формулы, связывающие синус и косинус с тангенсом и котангенсом:

\[ \boxed {\tan\; t=\frac{\sin\; t}{\cos\; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {\cot\; t=\frac{\cos\; }{\sin\; }, \qquad t \neq \pi k} \]

Из двух последних формул можно вывести еще одно тригометрическое тождество, связывающее на этот раз тангенс и котангенс:

\[ \boxed {\tan \; t \cdot \cot \; t = 1, \qquad t \neq \frac{\pi k}{2}} \]

Теперь давайте посмотрим, как эти формулы действуют на практике.

ПРИМЕР 1. Упростить выражение: а) \(1+ \tan^2 \; t \), б) \(1+ \cot^2 \; t \)

а) В первую очередь распишем тангенс, сохраняя квадрат:

\[ 1+ \tan^2 \; t = 1 + \frac{\sin^2 \; t}{\cos^2 \; t} \]

\[ 1 + \frac{\sin^2 \; t}{\cos^2 \; t}= \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} \]

Теперь введем все под общий знаменатель, и получаем:

\[ \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} = \frac{\cos^2 \; t + \sin^2 \; t}{\cos^2 \; t} \]

Ну и наконец, как мы видим числитель можно по основному тригонометрическому тождеству сократить до единицы, в итоге получаем: \[ 1+ \tan^2 \; = \frac{1}{\cos^2 \; t} \]

б) С котангенсом выполняем все те же самые действия, только в знаменателе будет уже не косинус, а синус и ответ получится таким:

\[ 1+ \cot^2 \; = \frac{1}{\sin^2 \; t} \]

Выполнив данное задание мы вывели еще две очень важные формулы, связывающие наши функции, которые тоже нужно знать, как свои пять пальцев:

\[ \boxed {1+ \tan^2 \; = \frac{1}{\cos^2 \; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {1+ \cot^2 \; = \frac{1}{\sin^2 \; t}, \qquad t \neq \pi k} \]

Все представленные в рамках формулы вы должны знать наизусть, иначе дальнейшее изучение тригонометрии без них просто невозможно. В дальнейшем будут еще формулы и их будет очень много и уверяю все их вы точно будете запоминать долго, а может и не запомните, но эти шесть штук должны знать ВСЕ!

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin t. Правда, правило соответствия довольно сложное, оно, как мы видели выше, заключается в следующем.

Чтобы по числу t найти значение sin t, нужно:

1) расположить числовую окружность в координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);

2) на окружности найти точку, соответствующую числу t;

3) найти ординату этой точки.

Эта ордината и есть sin t.

Фактически речь идет о функции u = sin t, где t -- любое действительное число.

Все эти функции называют тригонометрическими функциями числового аргумента t.

Есть целый ряд соотношений, связывающих значения различных тригонометрических функций, некоторые из этих соотношений мы уже получили:

sin 2 t+cos 2 t = 1

Из двух последних формул легко получить соотношение, связывающее tg t и ctg t:

Все указанные формулы используются в тех случаях, когда, зная значение какой-либо тригонометрической функции, требуется вычислить значения остальных тригонометрических функций.

Термины «синус», «косинус», «тангенс» и «котангенс» на самом деле были знакомы, правда, использовали их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс у г л а (а не

числа, как это было в предыдущих параграфах).

Из геометрии известно, что синус (косинус) острого угла -- это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла -- это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали в предыдущих параграфах. На самом деле эти подходы взаимосвязаны.

Возьмем угол с градусной мерой б o и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 14

вершину угла совместим с центром

окружности (с началом системы координат),

а одну сторону угла совместим с

положительным лучом оси абсцисс. Точку

пересечения второй стороны угла с

окружностью обозначим буквой М. Ордина-

рис 14 б o , а абсциссу этой точки -- косинусом угла б o .

Для отыскания синуса или косинуса угла б o совсем не обязательно каждый раз делать указанные весьма сложные построения.

Достаточно заметить, что дуга AM составляет такую же часть длины числовой окружности, какую угол б o составляет от утла 360°. Если длину дуги AM обозначить буквой t, то получим:

Таким образом,

Например,

Считают, что 30° -- это градусная мера угла, а -- радианная мера того же угла: 30° = рад. Вообще:

В частности, рад, откуда, в свою очередь, получаем.

Так что же такое 1 радиан? Есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° -- это центральный угол, опирающийся на дугу, составляющую часть окружности. Угол в 1 радиан -- это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу окружности. Из формулы, получаем, что 1 рад = 57,3°.

Рассматривая функцию u = sin t (или любую другую тригонометрическую функцию), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента.

В настоящей главе мы введем тригонометрические функции числового аргумента. Многие вопросы математики, механики, физики и других наук приводят к тригонометрическим функциям не только угла (дуги), но и аргументов совершенно различной природы (длина, время, температура и т. д.). До сих пор под аргументом тригонометрической функции понимался угол, измеренный в градусах или радианах. Теперь мы обобщим понятия синуса, косинуса, тангенса, котангенса, секанса и косеканса, введя их как функции числового аргумента.

Определение. Тригонометрическими функциями числового аргумента называются одноименные тригонометрические функции угла, равного радианам.

Поясним это определение на конкретных примерах.

Пример 1. Вычислим значенйе . Здесь под мы понимаем отвлеченное иррациональное число. Согласно определению . Итак, .

Пример 2. Вычислим значение . Здесь под 1,5 мы понимаем отвлеченное число. Согласно определению (см. приложение II).

Пример 3. Вычислим значение Аналогично предыдущему получаем (см. приложение II).

Итак, в дальнейшем под аргументом тригонометрических функций мы будем понимать угол (дугу) или просто число в зависимости от той задачи, которую решаем. А в ряде случаев аргументом может служить величина, имеющая и другую размерность, например время и т. д. Называя аргумент углом (дугой), мы можем подразумевать под ним число, с помощью которого он измерен в радианах.

Тригонометрические функции числового аргумента.

Тригонометрические функции числового аргумента t – это функции вида y = cos t,
y = sin t, y = tg t, y = ctg t.

С помощью этих формул через известное значение одной тригонометрической функции можно найти неизвестные значения других тригонометрических функций.

Пояснения .

1) Возьмем формулу cos 2 t + sin 2 t = 1 и выведем с ее помощью новую формулу.

Для этого разделим обе части формулы на cos 2 t (при t ≠ 0, то есть t ≠ π/2 + πk ). Итак:

cos 2 t sin 2 t 1
--- + --- = ---
cos 2 t cos 2 t cos 2 t

Первое слагаемое равно 1. Мы знаем, что отношение синуса к конисусу – это тангенс, значит, второе слагаемое равно tg 2 t. В результате мы получаем новую (и уже известную вам) формулу:

2) Теперь разделим cos 2 t + sin 2 t = 1 на sin 2 t (при t ≠ πk ):

cos 2 t sin 2 t 1
--- + --- = ---, где t ≠ πk + πk , k – целое число
sin 2 t sin 2 t sin 2 t

Отношение косинуса к синусу – это котангенс. Значит:


Зная элементарные основы математики и выучив основные формулы тригонометрии, вы легко сможете самостоятельно выводить большинство остальных тригонометрических тождеств. И это даже лучше, чем просто зазубривать их: выученное наизусть быстро забывается, а понятое запоминается надолго, если не навсегда. К примеру, необязательно зазубривать, чему равна сумма единицы и квадрата тангенса. Забыли – можно легко вспомнить, если вы знаете самую простую вещь: тангенс – это отношение синуса к косинусу. Примените вдобавок простое правило сложения дробей с разными знаменателями – и получите результат:

sin 2 t 1 sin 2 t cos 2 t + sin 2 t 1
1 + tg 2 t = 1 + --- = - + --- = ------ = ---
cos 2 t 1 cos 2 t cos 2 t cos 2 t

Точно так же легко можно найти сумму единицы и квадрата котангенса, как и многие другие тождества.

Тригонометрические функции углового аргумента.

В функциях у = cos t , у = sin t , у = tg t , у = ctg t переменная t может быть не только числовым аргументом. Ее можно считать и мерой угла – то есть угловым аргументом.

С помощью числовой окружности и системы координат можно легко найти синус, косинус, тангенс, котангенс любого угла. Для этого должны быть соблюдены два важных условия:
1) вершиной угла должен быть центр окружности, который одновременно является центром оси координат;

2) одной из сторон угла должен быть положительный луч оси x .

В этом случае ордината точки, в которой пересекаются окружность и вторая сторона угла, является синусом этого угла, а абсцисса этой точки – косинусом данного угла.

Пояснение . Нарисуем угол, одна сторона которого – положительный луч оси x , а вторая сторона выходит из начала оси координат (и из центра окружности) под углом 30º (см.рисунок). Тогда точка пересечения второй стороны с окружностью соответствует π/6. Нам известны ордината и абсцисса этой точки. Они же являются косинусом и синусом нашего угла:

√3 1
--; --
2 2

А зная синус и косинус угла, вы уже легко сможете найти его тангенс и котангенс.

Таким образом, числовая окружность, расположенная в системе координат, является удобным способом найти синус, косинус, тангенс или котангенс угла.

Но есть более простой способ. Можно и не рисовать окружность и систему координат. Можно воспользоваться простыми и удобными формулами:

Пример : найти синус и косинус угла, равного 60º.

Решение :

π · 60 π √3
sin 60º = sin --- = sin -- = --
180 3 2

π 1
cos 60º = cos -- = -
3 2

Пояснение : мы выяснили, что синус и косинус угла 60º соответствуют значениям точки окружности π/3. Далее просто находим в таблице значения этой точки – и таким образом решаем наш пример. Таблица синусов и косинусов основных точек числовой окружности – в предыдущем разделе и на странице «Таблицы».

error: