Что такое градусная мера. Определение. Градусная мера угла

Градусная мера угла. Радианная мера угла. Перевод градусов в радианы и обратно.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

В предыдущем уроке мы освоили отсчёт углов на тригонометрическом круге. Узнали, как отсчитывать положительные и отрицательные углы. Осознали, как нарисовать угол больше 360 градусов. Пришла пора разобраться с измерением углов. Особенно с числом "Пи", которое так и норовит запутать нас в хитрых заданиях, да...

Стандартные задания по тригонометрии с числом "Пи" решаются неплохо. Зрительная память выручает. А вот любое отклонение от шаблона - валит наповал! Чтобы не свалиться - понимать надо. Что мы с успехом сейчас и сделаем. В смысле - всё поймём!

Итак, в чём считаются углы? В школьном курсе тригонометрии используются две меры: градусная мера угла и радианная мера угла . Разберём эти меры. Без этого в тригонометрии - никуда.

Градусная мера угла.

К градусам мы как-то привыкли. Геометрию худо-бедно проходили... Да и в жизни частенько встречаемся с фразой "повернул на 180 градусов", например. Градус, короче, штука простая...

Да? Ответьте мне тогда, что такое градус? Что, не получается с ходу? То-то...

Градусы придумали в Древнем Вавилоне. Давненько это было... Веков 40 назад... И придумали просто. Взяли и разбили окружность на 360 равных частей. 1 градус - это 1/360 часть окружности. И всё. Могли разбить на 100 частей. Или на 1000. Но разбили на 360. Кстати, почему именно на 360? Чем 360 лучше 100? 100, вроде, как-то ровнее... Попробуйте ответить на этот вопрос. Или слабо против Древнего Вавилона?

Где-то в то же время, в Древнем Египте мучились другим вопросом. Во сколько раз длина окружности больше длины её диаметра? И так измеряли, и этак... Всё получалось немного больше трёх. Но как-то лохмато получалось, неровно... Но они, египтяне не виноваты. После них ещё веков 35 мучились. Пока окончательно не доказали, что как бы мелко не нарезать окружность на равные кусочки, из таких кусочков составить ровно длину диаметра нельзя... В принципе нельзя. Ну, во сколько раз окружность больше диаметра установили, конечно. Примерно. В 3,1415926... раз.

Это и есть число "Пи". Вот уж лохматое, так лохматое. После запятой - бесконечное число цифр без всякого порядка... Такие числа называются иррациональными. Это, кстати, и означает, что из равных кусочков окружности диаметр ровно не сложить. Никогда.

Для практического применения принято запоминать всего две цифры после запятой. Запоминаем:

Раз уж мы поняли, что длина окружности больше диаметра в "Пи" раз, имеет смысл запомнить формулу длины окружности:

Где L - длина окружности, а d - её диаметр.

В геометрии пригодится.

Для общего образования добавлю, что число "Пи" сидит не только в геометрии... В самых различных разделах математики, а особенно в теории вероятности, это число возникает постоянно! Само по себе. Вне наших желаний. Вот так.

Но вернёмся к градусам. Вы сообразили, почему в Древнем Вавилоне круг разбили на 360 равных частей? А не на 100, к примеру? Нет? Ну ладно. Выскажу версию. У древних вавилонян не спросишь... Для строительства, или, скажем, астрономии, круг удобно делить на равные части. А теперь прикиньте, на какие числа делится нацело 100, и на какие - 360? И в каком варианте этих делителей нацело - больше? Людям такое деление очень удобно. Но...

Как выяснилось много позже Древнего Вавилона, не всем нравятся градусы. Высшей математике они не нравятся... Высшая математика - дама серьёзная, по законам природы устроена. И эта дама заявляет: "Вы сегодня на 360 частей круг разбили, завтра на 100 разобьёте, послезавтра на 245... И что мне делать? Нет уж..." Пришлось послушаться. Природу не обманешь...

Пришлось ввести меру угла, не зависящую от человеческих придумок. Знакомьтесь - радиан!

Радианная мера угла.

Что такое радиан? В основе определения радиана - всё равно окружность. Угол в 1 радиан, это угол, который вырезает из окружности дугу, длина которой (L ) равна длине радиуса (R ). Смотрим картинки.

Маленький такой угол, почти и нет его... Наводим курсор на картинку (или коснёмся картинки на планшете) и видим примерно один радиан . L = R

Чувствуете разницу?

Один радиан много больше одного градуса. А во сколько раз?

Смотрим следующую картинку. На которой я нарисовал полукруг. Развёрнутый угол размером, естественно, в 180°.

А теперь я нарежу этот полукруг радианами! Наводим курсор на картинку и видим, что в 180° укладывается 3 с хвостиком радиана.

Кто угадает, чему равен этот хвостик!?

Да! Этот хвостик - 0,1415926.... Здравствуй, число "Пи", мы тебя ещё не забыли!

Действительно, в 180° градусах укладывается 3,1415926... радиан. Как вы сами понимаете, всё время писать 3,1415926... неудобно. Поэтому вместо этого бесконечного числа всегда пишут просто:

А вот в Интернете число

писать неудобно... Поэтому я в тексте пишу его по имени - "Пи". Не запутаетесь, поди?...

Вот теперь совершенно осмысленно можно записать приближённое равенство:

Или точное равенство:

Определим, сколько градусов в одном радиане. Как? Легко! Если в 3,14 радианах 180° градусов, то в 1 радиане в 3,14 раз меньше! То есть, мы делим первое уравнение (формула - это тоже уравнение!) на 3,14:

Это соотношение полезно запомнить В одном радиане примерно 60°. В тригонометрии очень часто приходится прикидывать, оценивать ситуацию. Вот тут это знание очень помогает.

Но главное умение этой темы - перевод градусов в радианы и обратно.

Если угол задан в радианах с числом "Пи", всё очень просто. Мы знаем, что "Пи" радиан = 180°. Вот и подставляем вместо "Пи" радиан - 180°. Получаем угол в градусах. Сокращаем, что сокращается, и ответ готов. Например, нам нужно выяснить, сколько градусов в угле "Пи"/2 радиан ? Вот и пишем:

Или, более экзотическое выражение:

Легко, верно?

Обратный перевод чуть сложнее. Но не сильно. Если угол дан в градусах, мы должны сообразить, чему равен один градус в радианах, и умножить это число на количество градусов. Чему равен 1° в радианах?

Смотрим на формулу и соображаем, что если 180° = "Пи" радиан, то 1° в 180 раз меньше. Или, другими словами, делим уравнение (формула - это тоже уравнение!) на 180. Представлять "Пи" как 3,14 никакой нужды нет, его всё равно всегда буквой пишут. Получаем, что один градус равен:

Вот и всё. Умножаем число градусов на это значение и получаем угол в радианах. Например:

Или, аналогично:

Как видите, в неспешной беседе с лирическими отступлениями выяснилось, что радианы - это очень просто. Да и перевод без проблем... И "Пи" - вполне терпимая штука... Так откуда путаница!?

Вскрою тайну. Дело в том, что в тригонометрических функциях значок градусов - пишется. Всегда. Например, sin35°. Это синус 35 градусов . А значок радианов (рад ) - не пишется! Он подразумевается. То ли лень математиков обуяла, то ли ещё что... Но решили не писать. Если внутри синуса - котангенса нет никаких значков, то угол - в радианах ! Например, cos3 - это косинус трёх радианов .

Это и приводит к непоняткам... Человек видит "Пи" и считает, что это 180°. Всегда и везде. Это, кстати, срабатывает. До поры до времени, пока примеры - стандартные. Но "Пи" - это число! Число 3,14, а никакие не градусы! Это "Пи" радиан = 180°!

Ещё раз: "Пи" - это число! 3,14. Иррациональное, но число. Такое же, как 5 или 8. Можно, к примеру, сделать примерно "Пи" шагов. Три шага и ещё маленько. Или купить "Пи" килограммов конфет. Если продавец образованный попадётся...

"Пи" - это число! Что, достал я вас этой фразой? Вы уже всё давно поняли? Ну ладно. Проверим. Скажите-ка, какое число больше?

Или, что меньше?

Это из серии слегка нестандартных вопросов, которые могут и в ступор вогнать...

Если вы тоже в ступор впали, вспоминаем заклинание: "Пи" - это число! 3,14. В самом первом синусе четко указано, что угол - в градусах ! Стало быть, заменять "Пи" на 180° - нельзя! "Пи" градусов - это примерно 3,14°. Следовательно, можно записать:

Во втором синусе обозначений никаких нет. Значит, там - радианы ! Вот здесь замена "Пи" на 180° вполне прокатит. Переводим радианы в градусы, как написано выше, получаем:

Осталось сравнить эти два синуса. Что. забыли, как? С помощью тригонометрического круга, конечно! Рисуем круг, рисуем примерные углы в 60° и 1,05°. Смотрим, какие синусы у этих углов. Короче, всё, как в конце темы про тригонометрический круг расписано. На круге (даже самом кривом!) будет чётко видно, что sin60° существенно больше, чем sin1,05° .

Совершенно аналогично поступим и с косинусами. На круге нарисуем углы примерно 4 градуса и 4 радиана (не забыли, чему примерно равен 1 радиан?). Круг всё и скажет! Конечно, cos4 меньше cos4°.

Потренируемся в обращении с мерами угла.

Переведите эти углы из градусной меры в радианную:

360°; 30°; 90°; 270°; 45°; 0°; 180°; 60°

У вас должны получиться такие значения в радианах (в другом порядке!)

0

Я, между прочим, специально выделил ответы в две строчки. Ну-ка, сообразим, что за углы в первой строчке? Хоть в градусах, хоть в радианах?

Да! Это оси системы координат! Если смотреть по тригонометрическому кругу, то подвижная сторона угла при этих значениях точно попадает на оси . Эти значения нужно знать железно. И угол 0 градусов (0 радиан) я отметил не зря. А то некоторые этот угол никак на круге найти не могут... И, соответственно, в тригонометрических функциях нуля путаются... Другое дело, что положение подвижной стороны в нуле градусов совпадает с положением в 360°, так совпадения на круге - сплошь и рядом.

Во второй строчке - тоже углы специальные... Это 30°, 45° и 60°. И что в них такого специального? Особо - ничего. Единственное отличие этих углов от всех остальных - именно про эти углы вы должны знать всё . И где они располагаются, и какие у этих углов тригонометрические функции. Скажем, значение sin100° вы знать не обязаны. А sin45° - уж будьте любезны! Это обязательные знания, без которых в тригонометрии делать нечего... Но об этом подробнее - в следующем уроке.

А пока продолжим тренировку. Переведите эти углы из радианной меры в градусную:

У вас должны получиться такие результаты (в беспорядке):

210°; 150°; 135°; 120°; 330°; 315°; 300°; 240°; 225°.

Получилось? Тогда можно считать, что перевод градусов в радианы и обратно - уже не ваша проблема.) Но перевод углов - это первый шаг к постижению тригонометрии. Там же ещё с синусами-косинусами работать надо. Да и с тангенсами, котангенсами тоже...

Второй мощный шаг - это умение определять положение любого угла на тригонометрическом круге. И в градусах, и в радианах. Про это самое умение я буду вам во всей тригонометрии занудно намекать, да...) Если вы всё знаете (или думаете, что всё знаете) про тригонометрический круг, и отсчёт углов на тригонометрическом круге, можете провериться. Решите эти несложные задания:

1. В какую четверть попадают углы:

45°, 175°, 355°, 91°, 355° ?

Легко? Продолжаем:

2. В какую четверть попадают углы:

402°, 535°, 3000°, -45°, -325°, -3000°?

Тоже без проблем? Ну, смотрите...)

3. Сможете разместить по четвертям углы:

Смогли? Ну вы даёте..)

4. На какие оси попадёт уголок:

и уголок:

Тоже легко? Хм...)

5. В какую четверть попадают углы:

И это получилось!? Ну, тогда я прям не знаю...)

6. Определить, в какую четверть попадают углы:

1, 2, 3 и 20 радианов.

Ответ дам только на последний вопрос (он слегка хитрый) последнего задания. Угол в 20 радианов попадёт в первую четверть.

Остальные ответы не дам не из жадности.) Просто, если вы не решили чего-то, сомневаетесь в результате, или на задание №4 потратили больше 10 секунд, вы слабо ориентируетесь в круге. Это будет вашей проблемой во всей тригонометрии. Лучше от неё (проблемы, а не тригонометрии!)) избавиться сразу. Это можно сделать в теме: Практическая работа с тригонометрическим кругом в разделе 555.

Там рассказано, как просто и правильно решать такие задания. Ну и эти задания решены, разумеется. И четвёртое задание решено за 10 секунд. Да так решено, что любой сможет!

Если же вы абсолютно уверены в своих ответах и вас не интересуют простые и безотказные способы работы с радианами - можете не посещать 555. Не настаиваю.)

Хорошее понимание - достаточно веская причина, чтобы двигаться дальше!)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Как найти градусную меру угла?


Для многих в школе геометрия - это настоящее испытание. Одной из базовых геометрических фигур является угол. Под этим понятием подразумевают два луча, которые берут начало в одной точке. Для измерения значения (величины) угла используют градусы или радианы. Как найти градусную меру угла, вы узнаете из нашей статьи.

Виды углов

Допустим, у нас есть угол. Если мы его разложим в прямую, тогда его величина будет равняться 180 градусам. Такой угол называют развернутым, а одним градусом считают 1/180 его часть.

Кроме развернутого угла различают еще острые (меньше 90 градусов), тупые (больше 90 градусов) и прямые (равные 90 градусам) углы. Эти термины используют для характеристики величины градусной меры угла.

Измерение угла

Величину угла измеряют с помощью транспортира. Это специальный прибор, на котором полукруг уже разбит на 180 частей. Приложите транспортир к углу так, чтобы одна из сторон угла совпадала с нижней частью транспортира. Второй луч должен пересекать дугу транспортира. Если этого не происходит, уберите транспортир и с помощью линейки удлините луч. Если угол «открывается» вправо от вершины, считывают его значение по верхней шкале, если влево - по нижней.

В системе СИ принято измерять величину угла в радианах, а не в градусах. В развернутом угле помещается всего 3,14 радиана, поэтому эта величина неудобна и на практике почти не применяется. Именно поэтому необходимо знать, как перевести радианы в градусы. Для этого существует формула:

  • Градусы = радианы/π х 180

Например, величина угла равняется 1,6 радиана. Переводим в градусы: 1,6/3,14 * 180 = 92

Свойства углов

Теперь вы знаете, как измерять и пересчитывать градусные меры углов. Но для решения задач необходимо еще знать свойства углов. На сегодняшний день сформулированы следующие аксиомы:

  • Любой угол можно выразить в градусной мере, большей нуля. Величина развернутого угла - 360.
  • Если угол состоит из нескольких углов, то его градусная мера равняется сумме всех углов.
  • В заданную полуплоскость от любого луча можно построить угол заданной величины, меньший 180 градусов, причем только один.
  • Величины равных углов одинаковы.
  • Чтобы сложить два угла, надо сложить их величины.

Понимание этих правил и умение измерять углы - ключ к успешному изучению геометрии.

Основные понятия

В рамках вопроса измерения углов, в данном разделе рассмотрим несколько понятий, относящихся к начальным геометрическим сведениям:

  • угол;
  • развёрнутый и неразвёрнутый угол;
  • градус, минута и секунда;
  • градусная мера угла;
  • прямой, острый и тупой углы.

Углом называют такую геометрическую фигуру, которая представляет собой точку (вершину) и исходящие из неё два луча (стороны). Угол называют развёрнутым, если оба луча лежат на одной прямой.

Благодаря градусной мере угла можно произвести измерение углов. Измерение углов проводится аналогично измерению отрезков. Так же, как и при измерении отрезков, при измерении углов используется специальная единица измерения. Чаще всего это градус.

Определение 1

Градус - это единица измерения. В геометрии он представляет собой угол, с которым сравнивают другие углы. Градус равен $\frac{1}{180}$ от развёрнутого угла.

Теперь можно дать определение градусной мере угла.

Определение 2

Градусная мера угла - это такое положительное число, которое обозначает, сколько раз градус помещается в данном угле.

Для измерения углов используют транспортир.

Пример записи градусной меры: $\angle ABC = 150^{\circ}$. На рисунке эта запись означает следующее:

В устной форме говорят так: "Угол АВС равен 150 градусам".

Некоторые части градуса имеют свои специальные названия. Минутой называют $\frac{1}{60}$ часть градуса, для обозначения используется знак $"$. Секундой называют $\frac{1}{60}$ часть минуты, для обозначения используют $""$. Пример записи угла в 75 градусов, 45 минут и 28 секунд: $75^{\circ}45"28""$.

Равными называют те углы, у которых градусные меры равны. Соответственно, углы можно сравнивать, говоря, что один угол меньше другого или один угол больше другого.

Выше было дано определение развернутому углу. Владея понятием градусной меры, мы можем описать разницу между развернутым и неразвернутым углом. Развернутый угол всегда равен $180^{\circ}$. Неразвернутый угол - это любой угол меньше $180^{\circ}$.

Различают прямой, острый и тупой углы. Прямой угол равен $90^{\circ}$, острый - меньше $90^{\circ}$, тупой - больше $90^{\circ}$ и меньше $180^{\circ}$.

Рисунок 4. Прямой, острый и тупой углы. Автор24 - интернет-биржа студенческих работ

В повседневной жизни есть примеры необходимости и важности умения измерять углы и понимать градусную меру. Измерение углов необходимо в различных исследованиях, в том числе в астрономии при определении положения небесных тел.

Для практики, попробуйте начертить хотя бы три неразвёрнутых угла и один развёрнутый разными способами, измерьте с помощью транспортира углы и запишите эти результаты. Можно задать случайные числа и попрактиковаться в точности черчения углов с помощью транспортира, деления их с помощью биссектрисы (биссектриса - это луч, исходящий из вершины данного угла и делящий угол пополам).

Примеры задач

Пример 1

Задача . Есть рисунок:

Лучи $DE$ и $DF$ - биссектрисы соответствующих углов $ADB$ и $BDC$. Требуется найти угол $ADC$, если $\angle EDF = 75^{\circ}$.

Решение . Так как угол $EDF$ содержит по половинке от каждого угла $ADB$ и $BDC$, то можем сделать вывод, что $EDF$ - это ровно половина самого угла $ADC$. Получаем простые вычисления: $\angle ADC=75\cdot 2=150^{\circ}$.

Ответ : $150^{\circ}$.

Приведём ещё один интересный пример.

Пример 2

Задача . Дан рисунок.

Угол $ABC$ прямой. Углы $ABE$, $EBD$ и $DBC$ равны. Требуется найти угол, образованный биссектрисами $ABE$ и $DBC$.

Решение . Так как $ABC$ - прямой угол, то, значит, он равен $90^{\circ}$. Угол $\angle EBD=90/3=30^{\circ}$. Так как углы $ABE$, $EBD$ и $DBC$ равны, то любой из них будет равен $30^{\circ}$. Биссектриса любого из этих углов поделит любой из этих углов на два угла, равных $15^{\circ}$. Так как две половины углов $ABE$ и $DBC$ принадлежат искомому углу, то мы можем утверждать, что искомый угол равен $30+15+15=60^{\circ}$.

Ответ . $60^{\circ}$

В данной статье мы раскрыли полностью вопрос о градусной мере угла и как измерять углы.

Математика, геометрия – многим эти науки, как, впрочем, и большинство других точных, даются крайне тяжело. Людям трудно разобраться в формулах и странной терминологии. Что скрывается под этим странным понятием?

Определение

Для начала, нужно рассмотреть просто меру угла. В этом поможет изображение луча и прямой линии. Сначала нужно провести, например, горизонтальную прямую линию. Затем от её первой точки проводится луч, не параллельный прямой. Таким образом, между прямой и лучом появляется некоторое расстояние, небольшой угол. Мера угла – это размер этого самого поворота луча.

Это понятие обозначает определенное цифровое значение, которое будет больше нуля. Оно выражается в градусах, а также его составных частях, то есть минутах и секундах. То количество градусов, которое поместится в угол между лучом и прямой, и будет градусной мерой.

Свойства углов

  • Абсолютно каждый угол будет иметь определённую градусную меру .
  • Если он полностью развернут, то число будет равняться 180 градусам.
  • Для нахождения градусной меры рассматривается сумма всех углов, которые разбил луч.
  • С помощью любого луча можно создать полуплоскость, в которой реально сделать угол. Он будет иметь градусную меру, величина которой будет менее 180, и такой угол может быть лишь один.

Как узнать меру угла?

Как правило, минимальной градусной мерой является 1 градус, который составит 1/180 от развернутого угла. Однако иногда нельзя получить настолько четкую цифру. В этих случаях применяют секунды и минуты.

При их нахождении значение можно перевести в градусы, таким образом получится доля градуса. Иногда применяют дробные числа, вроде 80,7 градуса.

Также важно запомнить ключевые величины. Прямой угол всегда будет равняться 90 градусам. Если мера больше, то он будет считаться тупым, а если меньше, то острым.

Лекция: Величина угла, градусная мера угла, соответствие между величиной угла и длиной дуги окружности

Мерой угла называют величину, на которую отклоняется некоторый луч относительно первоначального положения.

Мера угла может измеряться двумя величинами: градусами и радианами, отсюда и название единиц – градусная и радианная мера угла.

Градусная мера угла


Градусная мера дает возможность оценить, какое количество градусов, минут или секунд помещается в тот или иной угол.

Расчет углов в градусах производится с точки зрения того, что полный поворот луча – это 360°. Половина поворота 180° - развернутый угол, четверть – 90° - прямой угол и т.д.


Радианная мера угла

А теперь давайте же разберемся, что такое радианная мера угла. Как известно из физики, существуют дополнительные единицы. Например, для измерения температуры основной единицей являются Кельвины, а дополнительной градусы Цельсия. Для измерения длины мы используем метры, а англичане используют футы. Данный список можно продолжать и далее. Смысл в том, чтобы Вы поняли, что, кроме градусной меры измерения угла, существует радианная мера, которая так же имеет право на существование.



Для определения радианной меры угла используют окружность. Считается, что радианная мера – это длина дуги окружности, описанная центральным углом.


Напомним, что центральный угол – это угол, вершина которого находится в центре окружности, а лучи опираются на некоторую дугу.

Итак, угол в 1 рад имеет градусную меру в 57,3°. Радианная мера угла описывается либо натуральными числами, или же с использованием числа π ≈ 3,14.


Для геометрии удобнее использовать градусную меру угла, однако для тригонометрии используют радианную меру.

error: